Clustering:
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Oxford
Wiley
c2009
|
Schriftenreihe: | IEEE series on computational intelligence
|
Schlagworte: | |
Online-Zugang: | FHI01 FHN01 Volltext |
Beschreibung: | Includes bibliographical references and index COVER -- CONTENTS -- PREFACE -- 1. CLUSTER ANALYSIS -- 1.1. Classification and Clustering -- 1.2. Definition of Clusters -- 1.3. Clustering Applications -- 1.4. Literature of Clustering Algorithms -- 1.5. Outline of the Book -- 2. PROXIMITY MEASURES -- 2.1. Introduction -- 2.2. Feature Types and Measurement Levels -- 2.3. Definition of Proximity Measures -- 2.4. Proximity Measures for Continuous Variables -- 2.5. Proximity Measures for Discrete Variables -- 2.6. Proximity Measures for Mixed Variables -- 2.7. Summary -- 3. HIERARCHICAL CLUSTERING -- 3.1. Introduction -- 3.2. Agglomerative Hierarchical Clustering -- 3.3. Divisive Hierarchical Clustering -- 3.4. Recent Advances -- 3.5. Applications -- 3.6. Summary -- 4. PARTITIONAL CLUSTERING -- 4.1. Introduction -- 4.2. Clustering Criteria -- 4.3. K-Means Algorithm -- 4.4. Mixture Density-Based Clustering -- 4.5. Graph Theory-Based Clustering -- 4.6. Fuzzy Clustering -- 4.7. Search Techniques-Based Clustering Algorithms -- - 4.8. Applications -- 4.9. Summary -- 5. NEURAL NETWORK-BASED CLUSTERING -- 5.1. Introduction -- 5.2. Hard Competitive Learning Clustering -- 5.3. Soft Competitive Learning Clustering -- 5.4. Applications -- 5.5. Summary -- 6. KERNEL-BASED CLUSTERING -- 6.1. Introduction -- 6.2. Kernel Principal Component Analysis -- 6.3. Squared-Error-Based Clustering with Kernel Functions -- 6.4. Support Vector Clustering -- 6.5. Applications -- 6.6. Summary -- 7. SEQUENTIAL DATA CLUSTERING -- 7.1. Introduction -- 7.2. Sequence Similarity -- 7.3. Indirect Sequence Clustering -- 7.4. Model-Based Sequence Clustering -- 7.5. Applications-Genomic and Biological Sequence Clustering -- 7.6. Summary -- 8. LARGE-SCALE DATA CLUSTERING -- 8.1. Introduction -- 8.2. Random Sampling Methods -- 8.3. Condensation-Based Methods -- 8.4. Density-Based Methods -- 8.5. Grid-Based Methods -- 8.6. Divide and Conquer -- 8.7. Incremental Clustering -- 8.8. Applications -- 8.9. Summary -- - 9. DATA VISUALIZATION AND HIGH-DIMENSIONAL DATA CLUSTERING -- 9.1. Introduction -- 9.2. Linear Projection Algorithms -- 9.3. Nonlinear Projection Algorithms -- 9.4. Projected and Subspace Clustering -- 9.5. Applications -- 9.6. Summary -- 10. CLUSTER VALIDITY -- 10.1. Introduction -- 10.2. External Criteria -- 10.3. Internal Criteria -- 10.4. Relative Criteria -- 10.5. Summary -- 11. CONCLUDING REMARKS -- PROBLEMS -- REFERENCES -- AUTHOR INDEX -- SUBJECT INDEX. |
Beschreibung: | 1 Online-Ressource (x, 358 S.) |
ISBN: | 9780470382776 0470382775 9780470382783 0470382783 9780470276808 0470276800 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV040768928 | ||
003 | DE-604 | ||
005 | 20200206 | ||
007 | cr|uuu---uuuuu | ||
008 | 130221s2009 |||| o||u| ||||||eng d | ||
020 | |a 9780470382776 |9 978-0-470-38277-6 | ||
020 | |a 0470382775 |9 0-470-38277-5 | ||
020 | |a 9780470382783 |c Online |9 978-0-470-38278-3 | ||
020 | |a 0470382783 |c Online |9 0-470-38278-3 | ||
020 | |a 9780470276808 |9 978-0-470-27680-8 | ||
020 | |a 0470276800 |9 0-470-27680-0 | ||
024 | 7 | |a 10.1002/9780470382776 |2 doi | |
035 | |a (OCoLC)874310439 | ||
035 | |a (DE-599)BVBBV040768928 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-91 |a DE-861 |a DE-706 |a DE-573 |a DE-92 | ||
080 | |a 004 | ||
084 | |a ST 151 |0 (DE-625)143595: |2 rvk | ||
084 | |a ST 300 |0 (DE-625)143650: |2 rvk | ||
084 | |a DAT 700f |2 stub | ||
100 | 1 | |a Xu, Rui |e Verfasser |4 aut | |
245 | 1 | 0 | |a Clustering |c by Rui Xu, Donald C. Wunsch |
264 | 1 | |a Oxford |b Wiley |c c2009 | |
300 | |a 1 Online-Ressource (x, 358 S.) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a IEEE series on computational intelligence | |
500 | |a Includes bibliographical references and index | ||
500 | |a COVER -- CONTENTS -- PREFACE -- 1. CLUSTER ANALYSIS -- 1.1. Classification and Clustering -- 1.2. Definition of Clusters -- 1.3. Clustering Applications -- 1.4. Literature of Clustering Algorithms -- 1.5. Outline of the Book -- 2. PROXIMITY MEASURES -- 2.1. Introduction -- 2.2. Feature Types and Measurement Levels -- 2.3. Definition of Proximity Measures -- 2.4. Proximity Measures for Continuous Variables -- 2.5. Proximity Measures for Discrete Variables -- 2.6. Proximity Measures for Mixed Variables -- 2.7. Summary -- 3. HIERARCHICAL CLUSTERING -- 3.1. Introduction -- 3.2. Agglomerative Hierarchical Clustering -- 3.3. Divisive Hierarchical Clustering -- 3.4. Recent Advances -- 3.5. Applications -- 3.6. Summary -- 4. PARTITIONAL CLUSTERING -- 4.1. Introduction -- 4.2. Clustering Criteria -- 4.3. K-Means Algorithm -- 4.4. Mixture Density-Based Clustering -- 4.5. Graph Theory-Based Clustering -- 4.6. Fuzzy Clustering -- 4.7. Search Techniques-Based Clustering Algorithms -- | ||
500 | |a - 4.8. Applications -- 4.9. Summary -- 5. NEURAL NETWORK-BASED CLUSTERING -- 5.1. Introduction -- 5.2. Hard Competitive Learning Clustering -- 5.3. Soft Competitive Learning Clustering -- 5.4. Applications -- 5.5. Summary -- 6. KERNEL-BASED CLUSTERING -- 6.1. Introduction -- 6.2. Kernel Principal Component Analysis -- 6.3. Squared-Error-Based Clustering with Kernel Functions -- 6.4. Support Vector Clustering -- 6.5. Applications -- 6.6. Summary -- 7. SEQUENTIAL DATA CLUSTERING -- 7.1. Introduction -- 7.2. Sequence Similarity -- 7.3. Indirect Sequence Clustering -- 7.4. Model-Based Sequence Clustering -- 7.5. Applications-Genomic and Biological Sequence Clustering -- 7.6. Summary -- 8. LARGE-SCALE DATA CLUSTERING -- 8.1. Introduction -- 8.2. Random Sampling Methods -- 8.3. Condensation-Based Methods -- 8.4. Density-Based Methods -- 8.5. Grid-Based Methods -- 8.6. Divide and Conquer -- 8.7. Incremental Clustering -- 8.8. Applications -- 8.9. Summary -- | ||
500 | |a - 9. DATA VISUALIZATION AND HIGH-DIMENSIONAL DATA CLUSTERING -- 9.1. Introduction -- 9.2. Linear Projection Algorithms -- 9.3. Nonlinear Projection Algorithms -- 9.4. Projected and Subspace Clustering -- 9.5. Applications -- 9.6. Summary -- 10. CLUSTER VALIDITY -- 10.1. Introduction -- 10.2. External Criteria -- 10.3. Internal Criteria -- 10.4. Relative Criteria -- 10.5. Summary -- 11. CONCLUDING REMARKS -- PROBLEMS -- REFERENCES -- AUTHOR INDEX -- SUBJECT INDEX. | ||
650 | 7 | |a MATHEMATICS / Probability & Statistics / General |2 bisacsh | |
650 | 4 | |a Cluster analysis | |
650 | 4 | |a MATHEMATICS / Probability & Statistics / General / bisacsh | |
650 | 0 | 7 | |a Cluster-Analyse |0 (DE-588)4070044-6 |2 gnd |9 rswk-swf |
653 | |a Electronic books | ||
689 | 0 | 0 | |a Cluster-Analyse |0 (DE-588)4070044-6 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Wunsch, Donald C. |e Verfasser |4 aut | |
856 | 4 | 0 | |u https://onlinelibrary.wiley.com/doi/book/10.1002/9780470382776 |x Verlag |3 Volltext |
912 | |a ZDB-35-WIC |a ZDB-35-WEL | ||
940 | 1 | |q UBY_PDA_WIC_Kauf | |
940 | 1 | |q TUM_PDA_WIC_Kauf | |
940 | 1 | |q FRO_PDA_WIC | |
940 | 1 | |q UBG_PDA_WIC | |
940 | 1 | |q FHR_PDA_WIC | |
999 | |a oai:aleph.bib-bvb.de:BVB01-025747346 | ||
966 | e | |u https://ieeexplore.ieee.org/xpl/bkabstractplus.jsp?bkn=5236612 |l FHI01 |p ZDB-35-WEL |x Aggregator |3 Volltext | |
966 | e | |u https://ieeexplore.ieee.org/xpl/bkabstractplus.jsp?bkn=5236612 |l FHN01 |p ZDB-35-WEL |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804150098620317696 |
---|---|
any_adam_object | |
author | Xu, Rui Wunsch, Donald C. |
author_facet | Xu, Rui Wunsch, Donald C. |
author_role | aut aut |
author_sort | Xu, Rui |
author_variant | r x rx d c w dc dcw |
building | Verbundindex |
bvnumber | BV040768928 |
classification_rvk | ST 151 ST 300 |
classification_tum | DAT 700f |
collection | ZDB-35-WIC ZDB-35-WEL |
ctrlnum | (OCoLC)874310439 (DE-599)BVBBV040768928 |
discipline | Informatik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04683nmm a2200637zc 4500</leader><controlfield tag="001">BV040768928</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20200206 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">130221s2009 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780470382776</subfield><subfield code="9">978-0-470-38277-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0470382775</subfield><subfield code="9">0-470-38277-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780470382783</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-470-38278-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0470382783</subfield><subfield code="c">Online</subfield><subfield code="9">0-470-38278-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780470276808</subfield><subfield code="9">978-0-470-27680-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0470276800</subfield><subfield code="9">0-470-27680-0</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1002/9780470382776</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)874310439</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV040768928</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-861</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-573</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="080" ind1=" " ind2=" "><subfield code="a">004</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 151</subfield><subfield code="0">(DE-625)143595:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 300</subfield><subfield code="0">(DE-625)143650:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">DAT 700f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Xu, Rui</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Clustering</subfield><subfield code="c">by Rui Xu, Donald C. Wunsch</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Oxford</subfield><subfield code="b">Wiley</subfield><subfield code="c">c2009</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (x, 358 S.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">IEEE series on computational intelligence</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">COVER -- CONTENTS -- PREFACE -- 1. CLUSTER ANALYSIS -- 1.1. Classification and Clustering -- 1.2. Definition of Clusters -- 1.3. Clustering Applications -- 1.4. Literature of Clustering Algorithms -- 1.5. Outline of the Book -- 2. PROXIMITY MEASURES -- 2.1. Introduction -- 2.2. Feature Types and Measurement Levels -- 2.3. Definition of Proximity Measures -- 2.4. Proximity Measures for Continuous Variables -- 2.5. Proximity Measures for Discrete Variables -- 2.6. Proximity Measures for Mixed Variables -- 2.7. Summary -- 3. HIERARCHICAL CLUSTERING -- 3.1. Introduction -- 3.2. Agglomerative Hierarchical Clustering -- 3.3. Divisive Hierarchical Clustering -- 3.4. Recent Advances -- 3.5. Applications -- 3.6. Summary -- 4. PARTITIONAL CLUSTERING -- 4.1. Introduction -- 4.2. Clustering Criteria -- 4.3. K-Means Algorithm -- 4.4. Mixture Density-Based Clustering -- 4.5. Graph Theory-Based Clustering -- 4.6. Fuzzy Clustering -- 4.7. Search Techniques-Based Clustering Algorithms -- </subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a"> - 4.8. Applications -- 4.9. Summary -- 5. NEURAL NETWORK-BASED CLUSTERING -- 5.1. Introduction -- 5.2. Hard Competitive Learning Clustering -- 5.3. Soft Competitive Learning Clustering -- 5.4. Applications -- 5.5. Summary -- 6. KERNEL-BASED CLUSTERING -- 6.1. Introduction -- 6.2. Kernel Principal Component Analysis -- 6.3. Squared-Error-Based Clustering with Kernel Functions -- 6.4. Support Vector Clustering -- 6.5. Applications -- 6.6. Summary -- 7. SEQUENTIAL DATA CLUSTERING -- 7.1. Introduction -- 7.2. Sequence Similarity -- 7.3. Indirect Sequence Clustering -- 7.4. Model-Based Sequence Clustering -- 7.5. Applications-Genomic and Biological Sequence Clustering -- 7.6. Summary -- 8. LARGE-SCALE DATA CLUSTERING -- 8.1. Introduction -- 8.2. Random Sampling Methods -- 8.3. Condensation-Based Methods -- 8.4. Density-Based Methods -- 8.5. Grid-Based Methods -- 8.6. Divide and Conquer -- 8.7. Incremental Clustering -- 8.8. Applications -- 8.9. Summary -- </subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a"> - 9. DATA VISUALIZATION AND HIGH-DIMENSIONAL DATA CLUSTERING -- 9.1. Introduction -- 9.2. Linear Projection Algorithms -- 9.3. Nonlinear Projection Algorithms -- 9.4. Projected and Subspace Clustering -- 9.5. Applications -- 9.6. Summary -- 10. CLUSTER VALIDITY -- 10.1. Introduction -- 10.2. External Criteria -- 10.3. Internal Criteria -- 10.4. Relative Criteria -- 10.5. Summary -- 11. CONCLUDING REMARKS -- PROBLEMS -- REFERENCES -- AUTHOR INDEX -- SUBJECT INDEX.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Probability & Statistics / General</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cluster analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">MATHEMATICS / Probability & Statistics / General / bisacsh</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Cluster-Analyse</subfield><subfield code="0">(DE-588)4070044-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Electronic books</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Cluster-Analyse</subfield><subfield code="0">(DE-588)4070044-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wunsch, Donald C.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://onlinelibrary.wiley.com/doi/book/10.1002/9780470382776</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-35-WIC</subfield><subfield code="a">ZDB-35-WEL</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">UBY_PDA_WIC_Kauf</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">TUM_PDA_WIC_Kauf</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FRO_PDA_WIC</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">UBG_PDA_WIC</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FHR_PDA_WIC</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-025747346</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ieeexplore.ieee.org/xpl/bkabstractplus.jsp?bkn=5236612</subfield><subfield code="l">FHI01</subfield><subfield code="p">ZDB-35-WEL</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ieeexplore.ieee.org/xpl/bkabstractplus.jsp?bkn=5236612</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-35-WEL</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV040768928 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T00:33:31Z |
institution | BVB |
isbn | 9780470382776 0470382775 9780470382783 0470382783 9780470276808 0470276800 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-025747346 |
oclc_num | 874310439 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-861 DE-706 DE-573 DE-92 |
owner_facet | DE-91 DE-BY-TUM DE-861 DE-706 DE-573 DE-92 |
physical | 1 Online-Ressource (x, 358 S.) |
psigel | ZDB-35-WIC ZDB-35-WEL UBY_PDA_WIC_Kauf TUM_PDA_WIC_Kauf FRO_PDA_WIC UBG_PDA_WIC FHR_PDA_WIC |
publishDate | 2009 |
publishDateSearch | 2009 |
publishDateSort | 2009 |
publisher | Wiley |
record_format | marc |
series2 | IEEE series on computational intelligence |
spelling | Xu, Rui Verfasser aut Clustering by Rui Xu, Donald C. Wunsch Oxford Wiley c2009 1 Online-Ressource (x, 358 S.) txt rdacontent c rdamedia cr rdacarrier IEEE series on computational intelligence Includes bibliographical references and index COVER -- CONTENTS -- PREFACE -- 1. CLUSTER ANALYSIS -- 1.1. Classification and Clustering -- 1.2. Definition of Clusters -- 1.3. Clustering Applications -- 1.4. Literature of Clustering Algorithms -- 1.5. Outline of the Book -- 2. PROXIMITY MEASURES -- 2.1. Introduction -- 2.2. Feature Types and Measurement Levels -- 2.3. Definition of Proximity Measures -- 2.4. Proximity Measures for Continuous Variables -- 2.5. Proximity Measures for Discrete Variables -- 2.6. Proximity Measures for Mixed Variables -- 2.7. Summary -- 3. HIERARCHICAL CLUSTERING -- 3.1. Introduction -- 3.2. Agglomerative Hierarchical Clustering -- 3.3. Divisive Hierarchical Clustering -- 3.4. Recent Advances -- 3.5. Applications -- 3.6. Summary -- 4. PARTITIONAL CLUSTERING -- 4.1. Introduction -- 4.2. Clustering Criteria -- 4.3. K-Means Algorithm -- 4.4. Mixture Density-Based Clustering -- 4.5. Graph Theory-Based Clustering -- 4.6. Fuzzy Clustering -- 4.7. Search Techniques-Based Clustering Algorithms -- - 4.8. Applications -- 4.9. Summary -- 5. NEURAL NETWORK-BASED CLUSTERING -- 5.1. Introduction -- 5.2. Hard Competitive Learning Clustering -- 5.3. Soft Competitive Learning Clustering -- 5.4. Applications -- 5.5. Summary -- 6. KERNEL-BASED CLUSTERING -- 6.1. Introduction -- 6.2. Kernel Principal Component Analysis -- 6.3. Squared-Error-Based Clustering with Kernel Functions -- 6.4. Support Vector Clustering -- 6.5. Applications -- 6.6. Summary -- 7. SEQUENTIAL DATA CLUSTERING -- 7.1. Introduction -- 7.2. Sequence Similarity -- 7.3. Indirect Sequence Clustering -- 7.4. Model-Based Sequence Clustering -- 7.5. Applications-Genomic and Biological Sequence Clustering -- 7.6. Summary -- 8. LARGE-SCALE DATA CLUSTERING -- 8.1. Introduction -- 8.2. Random Sampling Methods -- 8.3. Condensation-Based Methods -- 8.4. Density-Based Methods -- 8.5. Grid-Based Methods -- 8.6. Divide and Conquer -- 8.7. Incremental Clustering -- 8.8. Applications -- 8.9. Summary -- - 9. DATA VISUALIZATION AND HIGH-DIMENSIONAL DATA CLUSTERING -- 9.1. Introduction -- 9.2. Linear Projection Algorithms -- 9.3. Nonlinear Projection Algorithms -- 9.4. Projected and Subspace Clustering -- 9.5. Applications -- 9.6. Summary -- 10. CLUSTER VALIDITY -- 10.1. Introduction -- 10.2. External Criteria -- 10.3. Internal Criteria -- 10.4. Relative Criteria -- 10.5. Summary -- 11. CONCLUDING REMARKS -- PROBLEMS -- REFERENCES -- AUTHOR INDEX -- SUBJECT INDEX. MATHEMATICS / Probability & Statistics / General bisacsh Cluster analysis MATHEMATICS / Probability & Statistics / General / bisacsh Cluster-Analyse (DE-588)4070044-6 gnd rswk-swf Electronic books Cluster-Analyse (DE-588)4070044-6 s DE-604 Wunsch, Donald C. Verfasser aut https://onlinelibrary.wiley.com/doi/book/10.1002/9780470382776 Verlag Volltext |
spellingShingle | Xu, Rui Wunsch, Donald C. Clustering MATHEMATICS / Probability & Statistics / General bisacsh Cluster analysis MATHEMATICS / Probability & Statistics / General / bisacsh Cluster-Analyse (DE-588)4070044-6 gnd |
subject_GND | (DE-588)4070044-6 |
title | Clustering |
title_auth | Clustering |
title_exact_search | Clustering |
title_full | Clustering by Rui Xu, Donald C. Wunsch |
title_fullStr | Clustering by Rui Xu, Donald C. Wunsch |
title_full_unstemmed | Clustering by Rui Xu, Donald C. Wunsch |
title_short | Clustering |
title_sort | clustering |
topic | MATHEMATICS / Probability & Statistics / General bisacsh Cluster analysis MATHEMATICS / Probability & Statistics / General / bisacsh Cluster-Analyse (DE-588)4070044-6 gnd |
topic_facet | MATHEMATICS / Probability & Statistics / General Cluster analysis MATHEMATICS / Probability & Statistics / General / bisacsh Cluster-Analyse |
url | https://onlinelibrary.wiley.com/doi/book/10.1002/9780470382776 |
work_keys_str_mv | AT xurui clustering AT wunschdonaldc clustering |