Coherent States and Applications in Mathematical Physics:
Gespeichert in:
Format: | Elektronisch E-Book |
---|---|
Sprache: | English |
Veröffentlicht: |
Dordrecht
Springer Netherlands
2012
|
Schriftenreihe: | Theoretical and Mathematical Physics
|
Schlagworte: | |
Online-Zugang: | TUM01 UBT01 Volltext |
Beschreibung: | The standard coherent states of quantum mechanics -- The Weyl-Heisenberg group and the coherent states of arbitrary profile -- The coherent states of the Harmonic Oscillator -- From Schrödinger to Fock-Bargmann representation.- Weyl quantization and coherent states: Classical and Quantum observables -- Wigner function -- Coherent states and operator norm estimates -- Product rule and applications -- Husimi functions, frequency sets and propagation -- The Wick and anti-Wick quantization -- The generalized coherent states in the sense of Perelomov -- The SU(1,1) coherent states: Definition and properties -- The squeezed states -- The SU(2) coherent states -- The quantum quadratic Hamiltonians: The propagator of quadratic quantum Hamiltonians -- The metaplectic transformations -- The propagation of coherent states -- Representation of the Weyl symbols of the metaplectic operators -- The semiclassical evolution of coherent states -- The van Vleck and Hermann-Kluk approximations -- The semiclassical Gutzwiller trace formula using coherent states decomposition -- The hydrogen atom coherent states: Definition and properties -- The localization around Kepler orbits -- The quantum singular oscillator: The two-body case -- The N-body case This book presents the various types of coherent states introduced and studied in the physics and mathematics literature and describes their properties together with application to quantum physics problems. It is intended to serve as a compendium on coherent states and their applications for physicists and mathematicians, stretching from the basic mathematical structures of generalized coherent states in the sense of Perelomov via the semiclassical evolution of coherent states to various specific examples of coherent states (hydrogen atom, quantum oscillator, ...) |
Beschreibung: | 1 Online-Ressource |
ISBN: | 9789400701960 |
DOI: | 10.1007/978-94-007-0196-0 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV040751433 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 130214s2012 |||| o||u| ||||||eng d | ||
020 | |a 9789400701960 |9 978-94-007-0196-0 | ||
024 | 7 | |a 10.1007/978-94-007-0196-0 |2 doi | |
035 | |a (OCoLC)802217952 | ||
035 | |a (DE-599)BVBBV040751433 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-703 |a DE-91 | ||
082 | 0 | |a 530.12 | |
084 | |a PHY 000 |2 stub | ||
245 | 1 | 0 | |a Coherent States and Applications in Mathematical Physics |c by Monique Combescure, Didier Robert |
264 | 1 | |a Dordrecht |b Springer Netherlands |c 2012 | |
300 | |a 1 Online-Ressource | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Theoretical and Mathematical Physics | |
500 | |a The standard coherent states of quantum mechanics -- The Weyl-Heisenberg group and the coherent states of arbitrary profile -- The coherent states of the Harmonic Oscillator -- From Schrödinger to Fock-Bargmann representation.- Weyl quantization and coherent states: Classical and Quantum observables -- Wigner function -- Coherent states and operator norm estimates -- Product rule and applications -- Husimi functions, frequency sets and propagation -- The Wick and anti-Wick quantization -- The generalized coherent states in the sense of Perelomov -- The SU(1,1) coherent states: Definition and properties -- The squeezed states -- The SU(2) coherent states -- The quantum quadratic Hamiltonians: The propagator of quadratic quantum Hamiltonians -- The metaplectic transformations -- The propagation of coherent states -- Representation of the Weyl symbols of the metaplectic operators -- The semiclassical evolution of coherent states -- The van Vleck and Hermann-Kluk approximations -- The semiclassical Gutzwiller trace formula using coherent states decomposition -- The hydrogen atom coherent states: Definition and properties -- The localization around Kepler orbits -- The quantum singular oscillator: The two-body case -- The N-body case | ||
500 | |a This book presents the various types of coherent states introduced and studied in the physics and mathematics literature and describes their properties together with application to quantum physics problems. It is intended to serve as a compendium on coherent states and their applications for physicists and mathematicians, stretching from the basic mathematical structures of generalized coherent states in the sense of Perelomov via the semiclassical evolution of coherent states to various specific examples of coherent states (hydrogen atom, quantum oscillator, ...) | ||
650 | 4 | |a Mathematik | |
650 | 4 | |a Mathematische Physik | |
650 | 4 | |a Quantentheorie | |
650 | 4 | |a Physics | |
650 | 4 | |a Mathematics | |
650 | 4 | |a Quantum theory | |
650 | 4 | |a Mathematical physics | |
650 | 4 | |a Quantum Physics | |
650 | 4 | |a Applications of Mathematics | |
650 | 4 | |a Mathematical Methods in Physics | |
700 | 1 | |a Combescure, Monique |e Sonstige |4 oth | |
700 | 1 | |a Robert, Didier |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-94-007-0196-0 |x Verlag |3 Volltext |
912 | |a ZDB-2-PHA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-025731184 | ||
966 | e | |u https://doi.org/10.1007/978-94-007-0196-0 |l TUM01 |p ZDB-2-PHA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-94-007-0196-0 |l UBT01 |p ZDB-2-PHA |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804150074889994240 |
---|---|
any_adam_object | |
building | Verbundindex |
bvnumber | BV040751433 |
classification_tum | PHY 000 |
collection | ZDB-2-PHA |
ctrlnum | (OCoLC)802217952 (DE-599)BVBBV040751433 |
dewey-full | 530.12 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530.12 |
dewey-search | 530.12 |
dewey-sort | 3530.12 |
dewey-tens | 530 - Physics |
discipline | Physik |
doi_str_mv | 10.1007/978-94-007-0196-0 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03461nmm a2200505zc 4500</leader><controlfield tag="001">BV040751433</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">130214s2012 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789400701960</subfield><subfield code="9">978-94-007-0196-0</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-94-007-0196-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)802217952</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV040751433</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530.12</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Coherent States and Applications in Mathematical Physics</subfield><subfield code="c">by Monique Combescure, Didier Robert</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Dordrecht</subfield><subfield code="b">Springer Netherlands</subfield><subfield code="c">2012</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Theoretical and Mathematical Physics</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">The standard coherent states of quantum mechanics -- The Weyl-Heisenberg group and the coherent states of arbitrary profile -- The coherent states of the Harmonic Oscillator -- From Schrödinger to Fock-Bargmann representation.- Weyl quantization and coherent states: Classical and Quantum observables -- Wigner function -- Coherent states and operator norm estimates -- Product rule and applications -- Husimi functions, frequency sets and propagation -- The Wick and anti-Wick quantization -- The generalized coherent states in the sense of Perelomov -- The SU(1,1) coherent states: Definition and properties -- The squeezed states -- The SU(2) coherent states -- The quantum quadratic Hamiltonians: The propagator of quadratic quantum Hamiltonians -- The metaplectic transformations -- The propagation of coherent states -- Representation of the Weyl symbols of the metaplectic operators -- The semiclassical evolution of coherent states -- The van Vleck and Hermann-Kluk approximations -- The semiclassical Gutzwiller trace formula using coherent states decomposition -- The hydrogen atom coherent states: Definition and properties -- The localization around Kepler orbits -- The quantum singular oscillator: The two-body case -- The N-body case</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This book presents the various types of coherent states introduced and studied in the physics and mathematics literature and describes their properties together with application to quantum physics problems. It is intended to serve as a compendium on coherent states and their applications for physicists and mathematicians, stretching from the basic mathematical structures of generalized coherent states in the sense of Perelomov via the semiclassical evolution of coherent states to various specific examples of coherent states (hydrogen atom, quantum oscillator, ...)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematische Physik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantentheorie</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Applications of Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical Methods in Physics</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Combescure, Monique</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Robert, Didier</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-94-007-0196-0</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-PHA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-025731184</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-94-007-0196-0</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-2-PHA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-94-007-0196-0</subfield><subfield code="l">UBT01</subfield><subfield code="p">ZDB-2-PHA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV040751433 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T00:33:09Z |
institution | BVB |
isbn | 9789400701960 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-025731184 |
oclc_num | 802217952 |
open_access_boolean | |
owner | DE-703 DE-91 DE-BY-TUM |
owner_facet | DE-703 DE-91 DE-BY-TUM |
physical | 1 Online-Ressource |
psigel | ZDB-2-PHA |
publishDate | 2012 |
publishDateSearch | 2012 |
publishDateSort | 2012 |
publisher | Springer Netherlands |
record_format | marc |
series2 | Theoretical and Mathematical Physics |
spelling | Coherent States and Applications in Mathematical Physics by Monique Combescure, Didier Robert Dordrecht Springer Netherlands 2012 1 Online-Ressource txt rdacontent c rdamedia cr rdacarrier Theoretical and Mathematical Physics The standard coherent states of quantum mechanics -- The Weyl-Heisenberg group and the coherent states of arbitrary profile -- The coherent states of the Harmonic Oscillator -- From Schrödinger to Fock-Bargmann representation.- Weyl quantization and coherent states: Classical and Quantum observables -- Wigner function -- Coherent states and operator norm estimates -- Product rule and applications -- Husimi functions, frequency sets and propagation -- The Wick and anti-Wick quantization -- The generalized coherent states in the sense of Perelomov -- The SU(1,1) coherent states: Definition and properties -- The squeezed states -- The SU(2) coherent states -- The quantum quadratic Hamiltonians: The propagator of quadratic quantum Hamiltonians -- The metaplectic transformations -- The propagation of coherent states -- Representation of the Weyl symbols of the metaplectic operators -- The semiclassical evolution of coherent states -- The van Vleck and Hermann-Kluk approximations -- The semiclassical Gutzwiller trace formula using coherent states decomposition -- The hydrogen atom coherent states: Definition and properties -- The localization around Kepler orbits -- The quantum singular oscillator: The two-body case -- The N-body case This book presents the various types of coherent states introduced and studied in the physics and mathematics literature and describes their properties together with application to quantum physics problems. It is intended to serve as a compendium on coherent states and their applications for physicists and mathematicians, stretching from the basic mathematical structures of generalized coherent states in the sense of Perelomov via the semiclassical evolution of coherent states to various specific examples of coherent states (hydrogen atom, quantum oscillator, ...) Mathematik Mathematische Physik Quantentheorie Physics Mathematics Quantum theory Mathematical physics Quantum Physics Applications of Mathematics Mathematical Methods in Physics Combescure, Monique Sonstige oth Robert, Didier Sonstige oth https://doi.org/10.1007/978-94-007-0196-0 Verlag Volltext |
spellingShingle | Coherent States and Applications in Mathematical Physics Mathematik Mathematische Physik Quantentheorie Physics Mathematics Quantum theory Mathematical physics Quantum Physics Applications of Mathematics Mathematical Methods in Physics |
title | Coherent States and Applications in Mathematical Physics |
title_auth | Coherent States and Applications in Mathematical Physics |
title_exact_search | Coherent States and Applications in Mathematical Physics |
title_full | Coherent States and Applications in Mathematical Physics by Monique Combescure, Didier Robert |
title_fullStr | Coherent States and Applications in Mathematical Physics by Monique Combescure, Didier Robert |
title_full_unstemmed | Coherent States and Applications in Mathematical Physics by Monique Combescure, Didier Robert |
title_short | Coherent States and Applications in Mathematical Physics |
title_sort | coherent states and applications in mathematical physics |
topic | Mathematik Mathematische Physik Quantentheorie Physics Mathematics Quantum theory Mathematical physics Quantum Physics Applications of Mathematics Mathematical Methods in Physics |
topic_facet | Mathematik Mathematische Physik Quantentheorie Physics Mathematics Quantum theory Mathematical physics Quantum Physics Applications of Mathematics Mathematical Methods in Physics |
url | https://doi.org/10.1007/978-94-007-0196-0 |
work_keys_str_mv | AT combescuremonique coherentstatesandapplicationsinmathematicalphysics AT robertdidier coherentstatesandapplicationsinmathematicalphysics |