Topological Insulators: Dirac Equation in Condensed Matters
Topological insulators are insulating in the bulk, but process metallic states around its boundary owing to the topological origin of the band structure. The metallic edge or surface states are immune to weak disorder or impurities, and robust against the deformation of the system geometry. This boo...
Gespeichert in:
Format: | Elektronisch E-Book |
---|---|
Sprache: | English |
Veröffentlicht: |
Berlin ; Heidelberg
Springer
[2012]
|
Schriftenreihe: | Springer Series in Solid-State Sciences
volume 174 |
Schlagworte: | |
Online-Zugang: | TUM01 UBT01 Volltext |
Zusammenfassung: | Topological insulators are insulating in the bulk, but process metallic states around its boundary owing to the topological origin of the band structure. The metallic edge or surface states are immune to weak disorder or impurities, and robust against the deformation of the system geometry. This book, Topological insulators, presents a unified description of topological insulators from one to three dimensions based on the modified Dirac equation. A series of solutions of the bound states near the boundary are derived, and the existing conditions of these solutions are described. Topological invariants and their applications to a variety of systems from one-dimensional polyacetalene, to two-dimensional quantum spin Hall effect and p-wave superconductors, and three-dimensional topological insulators and superconductors or superfluids are introduced, helping readers to better understand this fascinating new field. This book is intended for researchers and graduate students working in the field of topological insulators and related areas. Shun-Qing Shen is a Professor at the Department of Physics, the University of Hong Kong, China. |
Beschreibung: | 1 Online-Ressource (XIII, 225 Seiten) Illustrationen, Diagramme |
ISBN: | 9783642328589 |
DOI: | 10.1007/978-3-642-32858-9 |
Internformat
MARC
LEADER | 00000nmm a2200000 cb4500 | ||
---|---|---|---|
001 | BV040751382 | ||
003 | DE-604 | ||
005 | 20170914 | ||
007 | cr|uuu---uuuuu | ||
008 | 130214s2012 |||| o||u| ||||||eng d | ||
020 | |a 9783642328589 |c Online |9 978-3-642-32858-9 | ||
024 | 7 | |a 10.1007/978-3-642-32858-9 |2 doi | |
035 | |a (OCoLC)827074830 | ||
035 | |a (DE-599)BVBBV040751382 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-703 |a DE-91 | ||
082 | 0 | |a 537.622 | |
084 | |a UP 5110 |0 (DE-625)146414: |2 rvk | ||
084 | |a PHY 000 |2 stub | ||
245 | 1 | 0 | |a Topological Insulators |b Dirac Equation in Condensed Matters |c Shun-Qing Shen |
264 | 1 | |a Berlin ; Heidelberg |b Springer |c [2012] | |
300 | |a 1 Online-Ressource (XIII, 225 Seiten) |b Illustrationen, Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Springer Series in Solid-State Sciences |v volume 174 | |
520 | |a Topological insulators are insulating in the bulk, but process metallic states around its boundary owing to the topological origin of the band structure. The metallic edge or surface states are immune to weak disorder or impurities, and robust against the deformation of the system geometry. This book, Topological insulators, presents a unified description of topological insulators from one to three dimensions based on the modified Dirac equation. A series of solutions of the bound states near the boundary are derived, and the existing conditions of these solutions are described. Topological invariants and their applications to a variety of systems from one-dimensional polyacetalene, to two-dimensional quantum spin Hall effect and p-wave superconductors, and three-dimensional topological insulators and superconductors or superfluids are introduced, helping readers to better understand this fascinating new field. This book is intended for researchers and graduate students working in the field of topological insulators and related areas. Shun-Qing Shen is a Professor at the Department of Physics, the University of Hong Kong, China. | ||
650 | 4 | |a Physics | |
650 | 4 | |a Optical materials | |
650 | 4 | |a Semiconductors | |
650 | 4 | |a Solid State Physics | |
650 | 4 | |a Optical and Electronic Materials | |
650 | 0 | 7 | |a Topologischer Isolator |0 (DE-588)1035519526 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Topologischer Isolator |0 (DE-588)1035519526 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Shen, Shun-Qing |e Sonstige |0 (DE-588)103018741X |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-3-642-32857-2 |
830 | 0 | |a Springer Series in Solid-State Sciences |v volume 174 |w (DE-604)BV041204486 |9 174 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-642-32858-9 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-2-PHA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-025731134 | ||
966 | e | |u https://doi.org/10.1007/978-3-642-32858-9 |l TUM01 |p ZDB-2-PHA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-642-32858-9 |l UBT01 |p ZDB-2-PHA |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804150074821836800 |
---|---|
any_adam_object | |
author_GND | (DE-588)103018741X |
building | Verbundindex |
bvnumber | BV040751382 |
classification_rvk | UP 5110 |
classification_tum | PHY 000 |
collection | ZDB-2-PHA |
ctrlnum | (OCoLC)827074830 (DE-599)BVBBV040751382 |
dewey-full | 537.622 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 537 - Electricity and electronics |
dewey-raw | 537.622 |
dewey-search | 537.622 |
dewey-sort | 3537.622 |
dewey-tens | 530 - Physics |
discipline | Physik |
doi_str_mv | 10.1007/978-3-642-32858-9 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03024nmm a2200493 cb4500</leader><controlfield tag="001">BV040751382</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20170914 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">130214s2012 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642328589</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-642-32858-9</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-642-32858-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)827074830</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV040751382</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">537.622</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UP 5110</subfield><subfield code="0">(DE-625)146414:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Topological Insulators</subfield><subfield code="b">Dirac Equation in Condensed Matters</subfield><subfield code="c">Shun-Qing Shen</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin ; Heidelberg</subfield><subfield code="b">Springer</subfield><subfield code="c">[2012]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XIII, 225 Seiten)</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Springer Series in Solid-State Sciences</subfield><subfield code="v">volume 174</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Topological insulators are insulating in the bulk, but process metallic states around its boundary owing to the topological origin of the band structure. The metallic edge or surface states are immune to weak disorder or impurities, and robust against the deformation of the system geometry. This book, Topological insulators, presents a unified description of topological insulators from one to three dimensions based on the modified Dirac equation. A series of solutions of the bound states near the boundary are derived, and the existing conditions of these solutions are described. Topological invariants and their applications to a variety of systems from one-dimensional polyacetalene, to two-dimensional quantum spin Hall effect and p-wave superconductors, and three-dimensional topological insulators and superconductors or superfluids are introduced, helping readers to better understand this fascinating new field. This book is intended for researchers and graduate students working in the field of topological insulators and related areas. Shun-Qing Shen is a Professor at the Department of Physics, the University of Hong Kong, China.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optical materials</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Semiconductors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Solid State Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optical and Electronic Materials</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Topologischer Isolator</subfield><subfield code="0">(DE-588)1035519526</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Topologischer Isolator</subfield><subfield code="0">(DE-588)1035519526</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shen, Shun-Qing</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)103018741X</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-3-642-32857-2</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Springer Series in Solid-State Sciences</subfield><subfield code="v">volume 174</subfield><subfield code="w">(DE-604)BV041204486</subfield><subfield code="9">174</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-642-32858-9</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-PHA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-025731134</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-642-32858-9</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-2-PHA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-642-32858-9</subfield><subfield code="l">UBT01</subfield><subfield code="p">ZDB-2-PHA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV040751382 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T00:33:09Z |
institution | BVB |
isbn | 9783642328589 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-025731134 |
oclc_num | 827074830 |
open_access_boolean | |
owner | DE-703 DE-91 DE-BY-TUM |
owner_facet | DE-703 DE-91 DE-BY-TUM |
physical | 1 Online-Ressource (XIII, 225 Seiten) Illustrationen, Diagramme |
psigel | ZDB-2-PHA |
publishDate | 2012 |
publishDateSearch | 2012 |
publishDateSort | 2012 |
publisher | Springer |
record_format | marc |
series | Springer Series in Solid-State Sciences |
series2 | Springer Series in Solid-State Sciences |
spelling | Topological Insulators Dirac Equation in Condensed Matters Shun-Qing Shen Berlin ; Heidelberg Springer [2012] 1 Online-Ressource (XIII, 225 Seiten) Illustrationen, Diagramme txt rdacontent c rdamedia cr rdacarrier Springer Series in Solid-State Sciences volume 174 Topological insulators are insulating in the bulk, but process metallic states around its boundary owing to the topological origin of the band structure. The metallic edge or surface states are immune to weak disorder or impurities, and robust against the deformation of the system geometry. This book, Topological insulators, presents a unified description of topological insulators from one to three dimensions based on the modified Dirac equation. A series of solutions of the bound states near the boundary are derived, and the existing conditions of these solutions are described. Topological invariants and their applications to a variety of systems from one-dimensional polyacetalene, to two-dimensional quantum spin Hall effect and p-wave superconductors, and three-dimensional topological insulators and superconductors or superfluids are introduced, helping readers to better understand this fascinating new field. This book is intended for researchers and graduate students working in the field of topological insulators and related areas. Shun-Qing Shen is a Professor at the Department of Physics, the University of Hong Kong, China. Physics Optical materials Semiconductors Solid State Physics Optical and Electronic Materials Topologischer Isolator (DE-588)1035519526 gnd rswk-swf Topologischer Isolator (DE-588)1035519526 s DE-604 Shen, Shun-Qing Sonstige (DE-588)103018741X oth Erscheint auch als Druck-Ausgabe 978-3-642-32857-2 Springer Series in Solid-State Sciences volume 174 (DE-604)BV041204486 174 https://doi.org/10.1007/978-3-642-32858-9 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Topological Insulators Dirac Equation in Condensed Matters Springer Series in Solid-State Sciences Physics Optical materials Semiconductors Solid State Physics Optical and Electronic Materials Topologischer Isolator (DE-588)1035519526 gnd |
subject_GND | (DE-588)1035519526 |
title | Topological Insulators Dirac Equation in Condensed Matters |
title_auth | Topological Insulators Dirac Equation in Condensed Matters |
title_exact_search | Topological Insulators Dirac Equation in Condensed Matters |
title_full | Topological Insulators Dirac Equation in Condensed Matters Shun-Qing Shen |
title_fullStr | Topological Insulators Dirac Equation in Condensed Matters Shun-Qing Shen |
title_full_unstemmed | Topological Insulators Dirac Equation in Condensed Matters Shun-Qing Shen |
title_short | Topological Insulators |
title_sort | topological insulators dirac equation in condensed matters |
title_sub | Dirac Equation in Condensed Matters |
topic | Physics Optical materials Semiconductors Solid State Physics Optical and Electronic Materials Topologischer Isolator (DE-588)1035519526 gnd |
topic_facet | Physics Optical materials Semiconductors Solid State Physics Optical and Electronic Materials Topologischer Isolator |
url | https://doi.org/10.1007/978-3-642-32858-9 |
volume_link | (DE-604)BV041204486 |
work_keys_str_mv | AT shenshunqing topologicalinsulatorsdiracequationincondensedmatters |