Theory of Bilayer Graphene Spectroscopy:
Gespeichert in:
Format: | Elektronisch E-Book |
---|---|
Sprache: | English |
Veröffentlicht: |
Berlin, Heidelberg
Springer Berlin Heidelberg
2013
|
Schriftenreihe: | Springer Theses, Recognizing Outstanding Ph.D. Research
|
Schlagworte: | |
Online-Zugang: | TUM01 UBT01 Volltext |
Beschreibung: | The Tight-Binding Approach and the Resulting Electronic Structure -- Angle-Resolved Photoemission Spectroscopy -- Magneto-Optical Spectroscopy -- Electronic Raman Spectroscopy This thesis presents the theory of three key elements of optical spectroscopy of the electronic excitations in bilayer graphene: angle-resolved photoemission spectroscopy (ARPES), visible range Raman spectroscopy, and far-infrared (FIR) magneto-spectroscopy. Bilayer graphene (BLG) is an atomic two-dimensional crystal consisting of two honeycomb monolayers of carbon, arranged according to Bernal stacking. The unperturbed BLG has a unique band structure, which features chiral states of electrons with a characteristic Berry phase of 2$\pi$, and it has versatile properties which can be controlled by an externally applied transverse electric field and strain. It is shown in this work how ARPES of BLG can be used to obtain direct information about the chirality of electron states in the crystal. The author goes on to describe the influence of the interlayer asymmetry, which opens a gap in BLG, on ARPES and on FIR spectra in a strong magnetic field. Finally, he presents a comprehensive theory of inelastic Raman scattering resulting in the electron-hole excitations in bilayer graphene, at zero and quantizing magnetic fields. This predicts their polarization properties and peculiar selection rules in terms of the inter-Landau-level transitions |
Beschreibung: | 1 Online-Ressource |
ISBN: | 9783642309366 |
DOI: | 10.1007/978-3-642-30936-6 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV040751357 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 130214s2013 |||| o||u| ||||||eng d | ||
020 | |a 9783642309366 |9 978-3-642-30936-6 | ||
024 | 7 | |a 10.1007/978-3-642-30936-6 |2 doi | |
035 | |a (OCoLC)812054256 | ||
035 | |a (DE-599)BVBBV040751357 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-703 |a DE-91 | ||
082 | 0 | |a 621.36 | |
084 | |a PHY 000 |2 stub | ||
245 | 1 | 0 | |a Theory of Bilayer Graphene Spectroscopy |c by Marcin Mucha-Kruczyński |
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 2013 | |
300 | |a 1 Online-Ressource | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Springer Theses, Recognizing Outstanding Ph.D. Research | |
500 | |a The Tight-Binding Approach and the Resulting Electronic Structure -- Angle-Resolved Photoemission Spectroscopy -- Magneto-Optical Spectroscopy -- Electronic Raman Spectroscopy | ||
500 | |a This thesis presents the theory of three key elements of optical spectroscopy of the electronic excitations in bilayer graphene: angle-resolved photoemission spectroscopy (ARPES), visible range Raman spectroscopy, and far-infrared (FIR) magneto-spectroscopy. Bilayer graphene (BLG) is an atomic two-dimensional crystal consisting of two honeycomb monolayers of carbon, arranged according to Bernal stacking. The unperturbed BLG has a unique band structure, which features chiral states of electrons with a characteristic Berry phase of 2$\pi$, and it has versatile properties which can be controlled by an externally applied transverse electric field and strain. It is shown in this work how ARPES of BLG can be used to obtain direct information about the chirality of electron states in the crystal. The author goes on to describe the influence of the interlayer asymmetry, which opens a gap in BLG, on ARPES and on FIR spectra in a strong magnetic field. Finally, he presents a comprehensive theory of inelastic Raman scattering resulting in the electron-hole excitations in bilayer graphene, at zero and quantizing magnetic fields. This predicts their polarization properties and peculiar selection rules in terms of the inter-Landau-level transitions | ||
650 | 4 | |a Physics | |
650 | 4 | |a Nanotechnology | |
650 | 4 | |a Surfaces (Physics) | |
650 | 4 | |a Spectroscopy and Microscopy | |
650 | 4 | |a Surfaces and Interfaces, Thin Films | |
650 | 4 | |a Surface and Interface Science, Thin Films | |
650 | 4 | |a Nanoscale Science and Technology | |
655 | 7 | |8 1\p |0 (DE-588)4113937-9 |a Hochschulschrift |2 gnd-content | |
700 | 1 | |a Mucha-Kruczyński, Marcin |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-642-30936-6 |x Verlag |3 Volltext |
912 | |a ZDB-2-PHA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-025731109 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1007/978-3-642-30936-6 |l TUM01 |p ZDB-2-PHA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-642-30936-6 |l UBT01 |p ZDB-2-PHA |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804150074777796608 |
---|---|
any_adam_object | |
building | Verbundindex |
bvnumber | BV040751357 |
classification_tum | PHY 000 |
collection | ZDB-2-PHA |
ctrlnum | (OCoLC)812054256 (DE-599)BVBBV040751357 |
dewey-full | 621.36 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 621 - Applied physics |
dewey-raw | 621.36 |
dewey-search | 621.36 |
dewey-sort | 3621.36 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Physik Elektrotechnik / Elektronik / Nachrichtentechnik |
doi_str_mv | 10.1007/978-3-642-30936-6 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03147nmm a2200481zc 4500</leader><controlfield tag="001">BV040751357</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">130214s2013 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642309366</subfield><subfield code="9">978-3-642-30936-6</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-642-30936-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)812054256</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV040751357</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">621.36</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Theory of Bilayer Graphene Spectroscopy</subfield><subfield code="c">by Marcin Mucha-Kruczyński</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">2013</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Springer Theses, Recognizing Outstanding Ph.D. Research</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">The Tight-Binding Approach and the Resulting Electronic Structure -- Angle-Resolved Photoemission Spectroscopy -- Magneto-Optical Spectroscopy -- Electronic Raman Spectroscopy</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This thesis presents the theory of three key elements of optical spectroscopy of the electronic excitations in bilayer graphene: angle-resolved photoemission spectroscopy (ARPES), visible range Raman spectroscopy, and far-infrared (FIR) magneto-spectroscopy. Bilayer graphene (BLG) is an atomic two-dimensional crystal consisting of two honeycomb monolayers of carbon, arranged according to Bernal stacking. The unperturbed BLG has a unique band structure, which features chiral states of electrons with a characteristic Berry phase of 2$\pi$, and it has versatile properties which can be controlled by an externally applied transverse electric field and strain. It is shown in this work how ARPES of BLG can be used to obtain direct information about the chirality of electron states in the crystal. The author goes on to describe the influence of the interlayer asymmetry, which opens a gap in BLG, on ARPES and on FIR spectra in a strong magnetic field. Finally, he presents a comprehensive theory of inelastic Raman scattering resulting in the electron-hole excitations in bilayer graphene, at zero and quantizing magnetic fields. This predicts their polarization properties and peculiar selection rules in terms of the inter-Landau-level transitions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nanotechnology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Surfaces (Physics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spectroscopy and Microscopy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Surfaces and Interfaces, Thin Films</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Surface and Interface Science, Thin Films</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nanoscale Science and Technology</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)4113937-9</subfield><subfield code="a">Hochschulschrift</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mucha-Kruczyński, Marcin</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-642-30936-6</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-PHA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-025731109</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-642-30936-6</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-2-PHA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-642-30936-6</subfield><subfield code="l">UBT01</subfield><subfield code="p">ZDB-2-PHA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
genre | 1\p (DE-588)4113937-9 Hochschulschrift gnd-content |
genre_facet | Hochschulschrift |
id | DE-604.BV040751357 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T00:33:09Z |
institution | BVB |
isbn | 9783642309366 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-025731109 |
oclc_num | 812054256 |
open_access_boolean | |
owner | DE-703 DE-91 DE-BY-TUM |
owner_facet | DE-703 DE-91 DE-BY-TUM |
physical | 1 Online-Ressource |
psigel | ZDB-2-PHA |
publishDate | 2013 |
publishDateSearch | 2013 |
publishDateSort | 2013 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
series2 | Springer Theses, Recognizing Outstanding Ph.D. Research |
spelling | Theory of Bilayer Graphene Spectroscopy by Marcin Mucha-Kruczyński Berlin, Heidelberg Springer Berlin Heidelberg 2013 1 Online-Ressource txt rdacontent c rdamedia cr rdacarrier Springer Theses, Recognizing Outstanding Ph.D. Research The Tight-Binding Approach and the Resulting Electronic Structure -- Angle-Resolved Photoemission Spectroscopy -- Magneto-Optical Spectroscopy -- Electronic Raman Spectroscopy This thesis presents the theory of three key elements of optical spectroscopy of the electronic excitations in bilayer graphene: angle-resolved photoemission spectroscopy (ARPES), visible range Raman spectroscopy, and far-infrared (FIR) magneto-spectroscopy. Bilayer graphene (BLG) is an atomic two-dimensional crystal consisting of two honeycomb monolayers of carbon, arranged according to Bernal stacking. The unperturbed BLG has a unique band structure, which features chiral states of electrons with a characteristic Berry phase of 2$\pi$, and it has versatile properties which can be controlled by an externally applied transverse electric field and strain. It is shown in this work how ARPES of BLG can be used to obtain direct information about the chirality of electron states in the crystal. The author goes on to describe the influence of the interlayer asymmetry, which opens a gap in BLG, on ARPES and on FIR spectra in a strong magnetic field. Finally, he presents a comprehensive theory of inelastic Raman scattering resulting in the electron-hole excitations in bilayer graphene, at zero and quantizing magnetic fields. This predicts their polarization properties and peculiar selection rules in terms of the inter-Landau-level transitions Physics Nanotechnology Surfaces (Physics) Spectroscopy and Microscopy Surfaces and Interfaces, Thin Films Surface and Interface Science, Thin Films Nanoscale Science and Technology 1\p (DE-588)4113937-9 Hochschulschrift gnd-content Mucha-Kruczyński, Marcin Sonstige oth https://doi.org/10.1007/978-3-642-30936-6 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Theory of Bilayer Graphene Spectroscopy Physics Nanotechnology Surfaces (Physics) Spectroscopy and Microscopy Surfaces and Interfaces, Thin Films Surface and Interface Science, Thin Films Nanoscale Science and Technology |
subject_GND | (DE-588)4113937-9 |
title | Theory of Bilayer Graphene Spectroscopy |
title_auth | Theory of Bilayer Graphene Spectroscopy |
title_exact_search | Theory of Bilayer Graphene Spectroscopy |
title_full | Theory of Bilayer Graphene Spectroscopy by Marcin Mucha-Kruczyński |
title_fullStr | Theory of Bilayer Graphene Spectroscopy by Marcin Mucha-Kruczyński |
title_full_unstemmed | Theory of Bilayer Graphene Spectroscopy by Marcin Mucha-Kruczyński |
title_short | Theory of Bilayer Graphene Spectroscopy |
title_sort | theory of bilayer graphene spectroscopy |
topic | Physics Nanotechnology Surfaces (Physics) Spectroscopy and Microscopy Surfaces and Interfaces, Thin Films Surface and Interface Science, Thin Films Nanoscale Science and Technology |
topic_facet | Physics Nanotechnology Surfaces (Physics) Spectroscopy and Microscopy Surfaces and Interfaces, Thin Films Surface and Interface Science, Thin Films Nanoscale Science and Technology Hochschulschrift |
url | https://doi.org/10.1007/978-3-642-30936-6 |
work_keys_str_mv | AT muchakruczynskimarcin theoryofbilayergraphenespectroscopy |