Scanning SQUID Microscope for Studying Vortex Matter in Type-II Superconductors:
Gespeichert in:
Format: | Elektronisch E-Book |
---|---|
Sprache: | English |
Veröffentlicht: |
Berlin, Heidelberg
Springer Berlin Heidelberg
2012
|
Schriftenreihe: | Springer Theses, Recognizing Outstanding Ph.D. Research
|
Schlagworte: | |
Online-Zugang: | TUM01 UBT01 Volltext |
Beschreibung: | Introduction -- Scientific Background -- Open Questions -- Goal -- Methods -- SQUID-on-tip Fabrication -- Tuning Fork Assembly -- Scanning SQUID Microscopy -- Fabrication of Samples -- Results -- SQUID-on-tip Characterization -- Imaging -- Discussion -- Appendices Common methods of local magnetic imaging display either a high spatial resolution and relatively poor field sensitivity (MFM, Lorentz microscopy), or a relatively high field sensitivity but limited spatial resolution (scanning SQUID microscopy). Since the magnetic field of a nanoparticle or nanostructure decays rapidly with distance from the structure, the achievable spatial resolution is ultimately limited by the probe-sample separation. This thesis presents a novel method for fabricating the smallest superconducting quantum interference device (SQUID) that resides on the apex of a very sharp tip. The nanoSQUID-on-tip displays a characteristic size down to 100 nm and a field sensitivity of 10 -3 Gauss/Hz (1/2). A scanning SQUID microsope was constructed by gluing the nanoSQUID-on-tip to a quartz tuning-fork. This enabled the nanoSQUID to be scanned within nanometers of the sample surface, providing simultaneous images of sample topography and the magnetic field distribution. This microscope represents a significant improvement over the existing scanning SQUID techniques and is expected to be able to image the spin of a single electron. |
Beschreibung: | 1 Online-Ressource |
ISBN: | 9783642293931 |
DOI: | 10.1007/978-3-642-29393-1 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV040751320 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 130214s2012 |||| o||u| ||||||eng d | ||
020 | |a 9783642293931 |9 978-3-642-29393-1 | ||
024 | 7 | |a 10.1007/978-3-642-29393-1 |2 doi | |
035 | |a (OCoLC)801683837 | ||
035 | |a (DE-599)BVBBV040751320 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-703 |a DE-91 | ||
084 | |a PHY 000 |2 stub | ||
245 | 1 | 0 | |a Scanning SQUID Microscope for Studying Vortex Matter in Type-II Superconductors |c by Amit Finkler |
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 2012 | |
300 | |a 1 Online-Ressource | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Springer Theses, Recognizing Outstanding Ph.D. Research | |
500 | |a Introduction -- Scientific Background -- Open Questions -- Goal -- Methods -- SQUID-on-tip Fabrication -- Tuning Fork Assembly -- Scanning SQUID Microscopy -- Fabrication of Samples -- Results -- SQUID-on-tip Characterization -- Imaging -- Discussion -- Appendices | ||
500 | |a Common methods of local magnetic imaging display either a high spatial resolution and relatively poor field sensitivity (MFM, Lorentz microscopy), or a relatively high field sensitivity but limited spatial resolution (scanning SQUID microscopy). Since the magnetic field of a nanoparticle or nanostructure decays rapidly with distance from the structure, the achievable spatial resolution is ultimately limited by the probe-sample separation. This thesis presents a novel method for fabricating the smallest superconducting quantum interference device (SQUID) that resides on the apex of a very sharp tip. The nanoSQUID-on-tip displays a characteristic size down to 100 nm and a field sensitivity of 10 -3 Gauss/Hz (1/2). A scanning SQUID microsope was constructed by gluing the nanoSQUID-on-tip to a quartz tuning-fork. This enabled the nanoSQUID to be scanned within nanometers of the sample surface, providing simultaneous images of sample topography and the magnetic field distribution. This microscope represents a significant improvement over the existing scanning SQUID techniques and is expected to be able to image the spin of a single electron. | ||
650 | 4 | |a Physics | |
650 | 4 | |a Magnetism | |
650 | 4 | |a Nanotechnology | |
650 | 4 | |a Spectroscopy and Microscopy | |
650 | 4 | |a Magnetism, Magnetic Materials | |
650 | 4 | |a Strongly Correlated Systems, Superconductivity | |
700 | 1 | |a Finkler, Amit |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-642-29393-1 |x Verlag |3 Volltext |
912 | |a ZDB-2-PHA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-025731072 | ||
966 | e | |u https://doi.org/10.1007/978-3-642-29393-1 |l TUM01 |p ZDB-2-PHA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-642-29393-1 |l UBT01 |p ZDB-2-PHA |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804150074698104832 |
---|---|
any_adam_object | |
building | Verbundindex |
bvnumber | BV040751320 |
classification_tum | PHY 000 |
collection | ZDB-2-PHA |
ctrlnum | (OCoLC)801683837 (DE-599)BVBBV040751320 |
discipline | Physik |
doi_str_mv | 10.1007/978-3-642-29393-1 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02916nmm a2200433zc 4500</leader><controlfield tag="001">BV040751320</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">130214s2012 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642293931</subfield><subfield code="9">978-3-642-29393-1</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-642-29393-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)801683837</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV040751320</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Scanning SQUID Microscope for Studying Vortex Matter in Type-II Superconductors</subfield><subfield code="c">by Amit Finkler</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">2012</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Springer Theses, Recognizing Outstanding Ph.D. Research</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Introduction -- Scientific Background -- Open Questions -- Goal -- Methods -- SQUID-on-tip Fabrication -- Tuning Fork Assembly -- Scanning SQUID Microscopy -- Fabrication of Samples -- Results -- SQUID-on-tip Characterization -- Imaging -- Discussion -- Appendices</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Common methods of local magnetic imaging display either a high spatial resolution and relatively poor field sensitivity (MFM, Lorentz microscopy), or a relatively high field sensitivity but limited spatial resolution (scanning SQUID microscopy). Since the magnetic field of a nanoparticle or nanostructure decays rapidly with distance from the structure, the achievable spatial resolution is ultimately limited by the probe-sample separation. This thesis presents a novel method for fabricating the smallest superconducting quantum interference device (SQUID) that resides on the apex of a very sharp tip. The nanoSQUID-on-tip displays a characteristic size down to 100 nm and a field sensitivity of 10 -3 Gauss/Hz (1/2). A scanning SQUID microsope was constructed by gluing the nanoSQUID-on-tip to a quartz tuning-fork. This enabled the nanoSQUID to be scanned within nanometers of the sample surface, providing simultaneous images of sample topography and the magnetic field distribution. This microscope represents a significant improvement over the existing scanning SQUID techniques and is expected to be able to image the spin of a single electron.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Magnetism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nanotechnology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spectroscopy and Microscopy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Magnetism, Magnetic Materials</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Strongly Correlated Systems, Superconductivity</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Finkler, Amit</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-642-29393-1</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-PHA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-025731072</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-642-29393-1</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-2-PHA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-642-29393-1</subfield><subfield code="l">UBT01</subfield><subfield code="p">ZDB-2-PHA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV040751320 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T00:33:09Z |
institution | BVB |
isbn | 9783642293931 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-025731072 |
oclc_num | 801683837 |
open_access_boolean | |
owner | DE-703 DE-91 DE-BY-TUM |
owner_facet | DE-703 DE-91 DE-BY-TUM |
physical | 1 Online-Ressource |
psigel | ZDB-2-PHA |
publishDate | 2012 |
publishDateSearch | 2012 |
publishDateSort | 2012 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
series2 | Springer Theses, Recognizing Outstanding Ph.D. Research |
spelling | Scanning SQUID Microscope for Studying Vortex Matter in Type-II Superconductors by Amit Finkler Berlin, Heidelberg Springer Berlin Heidelberg 2012 1 Online-Ressource txt rdacontent c rdamedia cr rdacarrier Springer Theses, Recognizing Outstanding Ph.D. Research Introduction -- Scientific Background -- Open Questions -- Goal -- Methods -- SQUID-on-tip Fabrication -- Tuning Fork Assembly -- Scanning SQUID Microscopy -- Fabrication of Samples -- Results -- SQUID-on-tip Characterization -- Imaging -- Discussion -- Appendices Common methods of local magnetic imaging display either a high spatial resolution and relatively poor field sensitivity (MFM, Lorentz microscopy), or a relatively high field sensitivity but limited spatial resolution (scanning SQUID microscopy). Since the magnetic field of a nanoparticle or nanostructure decays rapidly with distance from the structure, the achievable spatial resolution is ultimately limited by the probe-sample separation. This thesis presents a novel method for fabricating the smallest superconducting quantum interference device (SQUID) that resides on the apex of a very sharp tip. The nanoSQUID-on-tip displays a characteristic size down to 100 nm and a field sensitivity of 10 -3 Gauss/Hz (1/2). A scanning SQUID microsope was constructed by gluing the nanoSQUID-on-tip to a quartz tuning-fork. This enabled the nanoSQUID to be scanned within nanometers of the sample surface, providing simultaneous images of sample topography and the magnetic field distribution. This microscope represents a significant improvement over the existing scanning SQUID techniques and is expected to be able to image the spin of a single electron. Physics Magnetism Nanotechnology Spectroscopy and Microscopy Magnetism, Magnetic Materials Strongly Correlated Systems, Superconductivity Finkler, Amit Sonstige oth https://doi.org/10.1007/978-3-642-29393-1 Verlag Volltext |
spellingShingle | Scanning SQUID Microscope for Studying Vortex Matter in Type-II Superconductors Physics Magnetism Nanotechnology Spectroscopy and Microscopy Magnetism, Magnetic Materials Strongly Correlated Systems, Superconductivity |
title | Scanning SQUID Microscope for Studying Vortex Matter in Type-II Superconductors |
title_auth | Scanning SQUID Microscope for Studying Vortex Matter in Type-II Superconductors |
title_exact_search | Scanning SQUID Microscope for Studying Vortex Matter in Type-II Superconductors |
title_full | Scanning SQUID Microscope for Studying Vortex Matter in Type-II Superconductors by Amit Finkler |
title_fullStr | Scanning SQUID Microscope for Studying Vortex Matter in Type-II Superconductors by Amit Finkler |
title_full_unstemmed | Scanning SQUID Microscope for Studying Vortex Matter in Type-II Superconductors by Amit Finkler |
title_short | Scanning SQUID Microscope for Studying Vortex Matter in Type-II Superconductors |
title_sort | scanning squid microscope for studying vortex matter in type ii superconductors |
topic | Physics Magnetism Nanotechnology Spectroscopy and Microscopy Magnetism, Magnetic Materials Strongly Correlated Systems, Superconductivity |
topic_facet | Physics Magnetism Nanotechnology Spectroscopy and Microscopy Magnetism, Magnetic Materials Strongly Correlated Systems, Superconductivity |
url | https://doi.org/10.1007/978-3-642-29393-1 |
work_keys_str_mv | AT finkleramit scanningsquidmicroscopeforstudyingvortexmatterintypeiisuperconductors |