Hyperbolic Chaos: A Physicist’s View
Gespeichert in:
Format: | Elektronisch E-Book |
---|---|
Sprache: | English |
Veröffentlicht: |
Berlin, Heidelberg
Springer Berlin Heidelberg
2012
|
Schlagworte: | |
Online-Zugang: | TUM01 UBT01 Volltext |
Beschreibung: | Part I Basic Notions and Review: Dynamical Systems and Hyperbolicity -- Dynamical Systems and Hyperbolicity -- Part II Low-Dimensional Models: Kicked Mechanical Models and Differential Equations with Periodic Switch -- Non-Autonomous Systems of Coupled Self-Oscillators -- Autonomous Low-dimensional Systems with Uniformly Hyperbolic Attractors in the Poincar'e Maps -- Parametric Generators of Hyperbolic Chaos -- Recognizing the Hyperbolicity: Cone Criterion and Other Approaches -- Part III Higher-Dimensional Systems and Phenomena: Systems of Four Alternately Excited Non-autonomous Oscillators -- Autonomous Systems Based on Dynamics Close to Heteroclinic Cycle -- Systems with Time-delay Feedback -- Chaos in Co-operative Dynamics of Alternately Synchronized Ensembles of Globally Coupled Self-oscillators -- Part IV Experimental Studies: Electronic Device with Attractor of Smale-Williams Type -- Delay-time Electronic Devices Generating Trains of Oscillations with Phases Governed by Chaotic Maps "Hyperbolic Chaos: A Physicist’s View" presents recent progress on uniformly hyperbolic attractors in dynamical systems from a physical rather than mathematical perspective (e.g. the Plykin attractor, the Smale – Williams solenoid). The structurally stable attractors manifest strong stochastic properties, but are insensitive to variation of functions and parameters in the dynamical systems. Based on these characteristics of hyperbolic chaos, this monograph shows how to find hyperbolic chaotic attractors in physical systems and how to design a physical systems that possess hyperbolic chaos. This book is designed as a reference work for university professors and researchers in the fields of physics, mechanics, and engineering. Dr. Sergey P. Kuznetsov is a professor at the Department of Nonlinear Processes, Saratov State University, Russia. |
Beschreibung: | 1 Online-Ressource |
ISBN: | 9783642236662 |
DOI: | 10.1007/978-3-642-23666-2 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV040751252 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 130214s2012 |||| o||u| ||||||eng d | ||
020 | |a 9783642236662 |9 978-3-642-23666-2 | ||
024 | 7 | |a 10.1007/978-3-642-23666-2 |2 doi | |
035 | |a (OCoLC)798967724 | ||
035 | |a (DE-599)BVBBV040751252 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-703 |a DE-91 | ||
084 | |a PHY 000 |2 stub | ||
245 | 1 | 0 | |a Hyperbolic Chaos |b A Physicist’s View |c by Sergey P. Kuznetsov |
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 2012 | |
300 | |a 1 Online-Ressource | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Part I Basic Notions and Review: Dynamical Systems and Hyperbolicity -- Dynamical Systems and Hyperbolicity -- Part II Low-Dimensional Models: Kicked Mechanical Models and Differential Equations with Periodic Switch -- Non-Autonomous Systems of Coupled Self-Oscillators -- Autonomous Low-dimensional Systems with Uniformly Hyperbolic Attractors in the Poincar'e Maps -- Parametric Generators of Hyperbolic Chaos -- Recognizing the Hyperbolicity: Cone Criterion and Other Approaches -- Part III Higher-Dimensional Systems and Phenomena: Systems of Four Alternately Excited Non-autonomous Oscillators -- Autonomous Systems Based on Dynamics Close to Heteroclinic Cycle -- Systems with Time-delay Feedback -- Chaos in Co-operative Dynamics of Alternately Synchronized Ensembles of Globally Coupled Self-oscillators -- Part IV Experimental Studies: Electronic Device with Attractor of Smale-Williams Type -- Delay-time Electronic Devices Generating Trains of Oscillations with Phases Governed by Chaotic Maps | ||
500 | |a "Hyperbolic Chaos: A Physicist’s View" presents recent progress on uniformly hyperbolic attractors in dynamical systems from a physical rather than mathematical perspective (e.g. the Plykin attractor, the Smale – Williams solenoid). The structurally stable attractors manifest strong stochastic properties, but are insensitive to variation of functions and parameters in the dynamical systems. Based on these characteristics of hyperbolic chaos, this monograph shows how to find hyperbolic chaotic attractors in physical systems and how to design a physical systems that possess hyperbolic chaos. This book is designed as a reference work for university professors and researchers in the fields of physics, mechanics, and engineering. Dr. Sergey P. Kuznetsov is a professor at the Department of Nonlinear Processes, Saratov State University, Russia. | ||
650 | 4 | |a Physics | |
650 | 4 | |a Systems theory | |
650 | 4 | |a Vibration | |
650 | 4 | |a Nonlinear Dynamics | |
650 | 4 | |a Systems Theory, Control | |
650 | 4 | |a Vibration, Dynamical Systems, Control | |
650 | 0 | 7 | |a Attraktor |0 (DE-588)4140563-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Chaotisches System |0 (DE-588)4316104-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Hyperbolizität |0 (DE-588)4710615-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Nichtlineare Dynamik |0 (DE-588)4126141-0 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Nichtlineare Dynamik |0 (DE-588)4126141-0 |D s |
689 | 0 | 1 | |a Chaotisches System |0 (DE-588)4316104-2 |D s |
689 | 0 | 2 | |a Attraktor |0 (DE-588)4140563-8 |D s |
689 | 0 | 3 | |a Hyperbolizität |0 (DE-588)4710615-3 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Kuznetsov, Sergey P. |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-642-23666-2 |x Verlag |3 Volltext |
912 | |a ZDB-2-PHA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-025731004 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1007/978-3-642-23666-2 |l TUM01 |p ZDB-2-PHA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-642-23666-2 |l UBT01 |p ZDB-2-PHA |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804150074579615744 |
---|---|
any_adam_object | |
building | Verbundindex |
bvnumber | BV040751252 |
classification_tum | PHY 000 |
collection | ZDB-2-PHA |
ctrlnum | (OCoLC)798967724 (DE-599)BVBBV040751252 |
discipline | Physik |
doi_str_mv | 10.1007/978-3-642-23666-2 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03834nmm a2200541zc 4500</leader><controlfield tag="001">BV040751252</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">130214s2012 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642236662</subfield><subfield code="9">978-3-642-23666-2</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-642-23666-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)798967724</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV040751252</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Hyperbolic Chaos</subfield><subfield code="b">A Physicist’s View</subfield><subfield code="c">by Sergey P. Kuznetsov</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">2012</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Part I Basic Notions and Review: Dynamical Systems and Hyperbolicity -- Dynamical Systems and Hyperbolicity -- Part II Low-Dimensional Models: Kicked Mechanical Models and Differential Equations with Periodic Switch -- Non-Autonomous Systems of Coupled Self-Oscillators -- Autonomous Low-dimensional Systems with Uniformly Hyperbolic Attractors in the Poincar'e Maps -- Parametric Generators of Hyperbolic Chaos -- Recognizing the Hyperbolicity: Cone Criterion and Other Approaches -- Part III Higher-Dimensional Systems and Phenomena: Systems of Four Alternately Excited Non-autonomous Oscillators -- Autonomous Systems Based on Dynamics Close to Heteroclinic Cycle -- Systems with Time-delay Feedback -- Chaos in Co-operative Dynamics of Alternately Synchronized Ensembles of Globally Coupled Self-oscillators -- Part IV Experimental Studies: Electronic Device with Attractor of Smale-Williams Type -- Delay-time Electronic Devices Generating Trains of Oscillations with Phases Governed by Chaotic Maps</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">"Hyperbolic Chaos: A Physicist’s View" presents recent progress on uniformly hyperbolic attractors in dynamical systems from a physical rather than mathematical perspective (e.g. the Plykin attractor, the Smale – Williams solenoid). The structurally stable attractors manifest strong stochastic properties, but are insensitive to variation of functions and parameters in the dynamical systems. Based on these characteristics of hyperbolic chaos, this monograph shows how to find hyperbolic chaotic attractors in physical systems and how to design a physical systems that possess hyperbolic chaos. This book is designed as a reference work for university professors and researchers in the fields of physics, mechanics, and engineering. Dr. Sergey P. Kuznetsov is a professor at the Department of Nonlinear Processes, Saratov State University, Russia. </subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Systems theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Vibration</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nonlinear Dynamics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Systems Theory, Control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Vibration, Dynamical Systems, Control</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Attraktor</subfield><subfield code="0">(DE-588)4140563-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Chaotisches System</subfield><subfield code="0">(DE-588)4316104-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hyperbolizität</subfield><subfield code="0">(DE-588)4710615-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nichtlineare Dynamik</subfield><subfield code="0">(DE-588)4126141-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Nichtlineare Dynamik</subfield><subfield code="0">(DE-588)4126141-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Chaotisches System</subfield><subfield code="0">(DE-588)4316104-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Attraktor</subfield><subfield code="0">(DE-588)4140563-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Hyperbolizität</subfield><subfield code="0">(DE-588)4710615-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kuznetsov, Sergey P.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-642-23666-2</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-PHA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-025731004</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-642-23666-2</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-2-PHA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-642-23666-2</subfield><subfield code="l">UBT01</subfield><subfield code="p">ZDB-2-PHA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV040751252 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T00:33:09Z |
institution | BVB |
isbn | 9783642236662 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-025731004 |
oclc_num | 798967724 |
open_access_boolean | |
owner | DE-703 DE-91 DE-BY-TUM |
owner_facet | DE-703 DE-91 DE-BY-TUM |
physical | 1 Online-Ressource |
psigel | ZDB-2-PHA |
publishDate | 2012 |
publishDateSearch | 2012 |
publishDateSort | 2012 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
spelling | Hyperbolic Chaos A Physicist’s View by Sergey P. Kuznetsov Berlin, Heidelberg Springer Berlin Heidelberg 2012 1 Online-Ressource txt rdacontent c rdamedia cr rdacarrier Part I Basic Notions and Review: Dynamical Systems and Hyperbolicity -- Dynamical Systems and Hyperbolicity -- Part II Low-Dimensional Models: Kicked Mechanical Models and Differential Equations with Periodic Switch -- Non-Autonomous Systems of Coupled Self-Oscillators -- Autonomous Low-dimensional Systems with Uniformly Hyperbolic Attractors in the Poincar'e Maps -- Parametric Generators of Hyperbolic Chaos -- Recognizing the Hyperbolicity: Cone Criterion and Other Approaches -- Part III Higher-Dimensional Systems and Phenomena: Systems of Four Alternately Excited Non-autonomous Oscillators -- Autonomous Systems Based on Dynamics Close to Heteroclinic Cycle -- Systems with Time-delay Feedback -- Chaos in Co-operative Dynamics of Alternately Synchronized Ensembles of Globally Coupled Self-oscillators -- Part IV Experimental Studies: Electronic Device with Attractor of Smale-Williams Type -- Delay-time Electronic Devices Generating Trains of Oscillations with Phases Governed by Chaotic Maps "Hyperbolic Chaos: A Physicist’s View" presents recent progress on uniformly hyperbolic attractors in dynamical systems from a physical rather than mathematical perspective (e.g. the Plykin attractor, the Smale – Williams solenoid). The structurally stable attractors manifest strong stochastic properties, but are insensitive to variation of functions and parameters in the dynamical systems. Based on these characteristics of hyperbolic chaos, this monograph shows how to find hyperbolic chaotic attractors in physical systems and how to design a physical systems that possess hyperbolic chaos. This book is designed as a reference work for university professors and researchers in the fields of physics, mechanics, and engineering. Dr. Sergey P. Kuznetsov is a professor at the Department of Nonlinear Processes, Saratov State University, Russia. Physics Systems theory Vibration Nonlinear Dynamics Systems Theory, Control Vibration, Dynamical Systems, Control Attraktor (DE-588)4140563-8 gnd rswk-swf Chaotisches System (DE-588)4316104-2 gnd rswk-swf Hyperbolizität (DE-588)4710615-3 gnd rswk-swf Nichtlineare Dynamik (DE-588)4126141-0 gnd rswk-swf Nichtlineare Dynamik (DE-588)4126141-0 s Chaotisches System (DE-588)4316104-2 s Attraktor (DE-588)4140563-8 s Hyperbolizität (DE-588)4710615-3 s 1\p DE-604 Kuznetsov, Sergey P. Sonstige oth https://doi.org/10.1007/978-3-642-23666-2 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Hyperbolic Chaos A Physicist’s View Physics Systems theory Vibration Nonlinear Dynamics Systems Theory, Control Vibration, Dynamical Systems, Control Attraktor (DE-588)4140563-8 gnd Chaotisches System (DE-588)4316104-2 gnd Hyperbolizität (DE-588)4710615-3 gnd Nichtlineare Dynamik (DE-588)4126141-0 gnd |
subject_GND | (DE-588)4140563-8 (DE-588)4316104-2 (DE-588)4710615-3 (DE-588)4126141-0 |
title | Hyperbolic Chaos A Physicist’s View |
title_auth | Hyperbolic Chaos A Physicist’s View |
title_exact_search | Hyperbolic Chaos A Physicist’s View |
title_full | Hyperbolic Chaos A Physicist’s View by Sergey P. Kuznetsov |
title_fullStr | Hyperbolic Chaos A Physicist’s View by Sergey P. Kuznetsov |
title_full_unstemmed | Hyperbolic Chaos A Physicist’s View by Sergey P. Kuznetsov |
title_short | Hyperbolic Chaos |
title_sort | hyperbolic chaos a physicist s view |
title_sub | A Physicist’s View |
topic | Physics Systems theory Vibration Nonlinear Dynamics Systems Theory, Control Vibration, Dynamical Systems, Control Attraktor (DE-588)4140563-8 gnd Chaotisches System (DE-588)4316104-2 gnd Hyperbolizität (DE-588)4710615-3 gnd Nichtlineare Dynamik (DE-588)4126141-0 gnd |
topic_facet | Physics Systems theory Vibration Nonlinear Dynamics Systems Theory, Control Vibration, Dynamical Systems, Control Attraktor Chaotisches System Hyperbolizität Nichtlineare Dynamik |
url | https://doi.org/10.1007/978-3-642-23666-2 |
work_keys_str_mv | AT kuznetsovsergeyp hyperbolicchaosaphysicistsview |