Models of Science Dynamics: Encounters Between Complexity Theory and Information Sciences
Gespeichert in:
Format: | Elektronisch E-Book |
---|---|
Sprache: | English |
Veröffentlicht: |
Berlin, Heidelberg
Springer Berlin Heidelberg
2012
|
Schriftenreihe: | Understanding Complex Systems
|
Schlagworte: | |
Online-Zugang: | TUM01 UBT01 Volltext |
Beschreibung: | Part I Foundations -- An Introduction to Modeling Science: Basic Model Types, Key Definitions, and a General Framework for the Comparison of Process Models -- Mathematical Approaches to Modeling Science From an Algorithmic-historiography Perspectice -- Part II Exemplary Model Type -- Knowledge Epidemics and Population Dynamics Models for Describing Idea Diffusion -- Agent-based Models of Science -- Evolutionary Game Theory and Complex Networks of Scientific Information -- Part III Exemplary Model Applications -- Dynamic Scientific Co-authorship Networks -- Citation Networks -- Part IV Outlook -- Science Policy and the Challenges for Modeling Science -- Index Models of science dynamics aim to capture the structure and evolution of science. They are developed in an emerging research area in which scholars, scientific institutions and scientific communications become themselves basic objects of research. In order to understand phenomena as diverse as the structure of evolving co-authorship networks or citation diffusion patterns, different models have been developed. They include conceptual models based on historical and ethnographic observations, mathematical descriptions of measurable phenomena, and computational algorithms. Despite its evident importance, the mathematical modeling of science still lacks a unifying framework and a comprehensive research agenda.This book aims to fill this gap, reviewing and describing major threads in the mathematical modeling of science dynamics for a wider academic and professional audience. The model classes presented here cover stochastic and statistical models, game-theoretic approaches, agent-based simulations, population-dynamics models, and complex network models. The book starts with a foundational chapter that defines and operationalizes terminology used in the study of science, and a review chapter that discusses the history of mathematical approaches to modeling science from an algorithmic-historiography perspective. It concludes with a survey of future challenges for science modeling and discusses their relevance for science policy and science policy studies |
Beschreibung: | 1 Online-Ressource |
ISBN: | 9783642230684 |
DOI: | 10.1007/978-3-642-23068-4 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV040751233 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 130214s2012 |||| o||u| ||||||eng d | ||
020 | |a 9783642230684 |9 978-3-642-23068-4 | ||
024 | 7 | |a 10.1007/978-3-642-23068-4 |2 doi | |
035 | |a (OCoLC)850968726 | ||
035 | |a (DE-599)BVBBV040751233 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-703 |a DE-91 | ||
082 | 0 | |a 300.1 | |
084 | |a PHY 000 |2 stub | ||
245 | 1 | 0 | |a Models of Science Dynamics |b Encounters Between Complexity Theory and Information Sciences |c edited by Andrea Scharnhorst, Katy Börner, Peter Besselaar |
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 2012 | |
300 | |a 1 Online-Ressource | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Understanding Complex Systems | |
500 | |a Part I Foundations -- An Introduction to Modeling Science: Basic Model Types, Key Definitions, and a General Framework for the Comparison of Process Models -- Mathematical Approaches to Modeling Science From an Algorithmic-historiography Perspectice -- Part II Exemplary Model Type -- Knowledge Epidemics and Population Dynamics Models for Describing Idea Diffusion -- Agent-based Models of Science -- Evolutionary Game Theory and Complex Networks of Scientific Information -- Part III Exemplary Model Applications -- Dynamic Scientific Co-authorship Networks -- Citation Networks -- Part IV Outlook -- Science Policy and the Challenges for Modeling Science -- Index | ||
500 | |a Models of science dynamics aim to capture the structure and evolution of science. They are developed in an emerging research area in which scholars, scientific institutions and scientific communications become themselves basic objects of research. In order to understand phenomena as diverse as the structure of evolving co-authorship networks or citation diffusion patterns, different models have been developed. They include conceptual models based on historical and ethnographic observations, mathematical descriptions of measurable phenomena, and computational algorithms. Despite its evident importance, the mathematical modeling of science still lacks a unifying framework and a comprehensive research agenda.This book aims to fill this gap, reviewing and describing major threads in the mathematical modeling of science dynamics for a wider academic and professional audience. The model classes presented here cover stochastic and statistical models, game-theoretic approaches, agent-based simulations, population-dynamics models, and complex network models. The book starts with a foundational chapter that defines and operationalizes terminology used in the study of science, and a review chapter that discusses the history of mathematical approaches to modeling science from an algorithmic-historiography perspective. It concludes with a survey of future challenges for science modeling and discusses their relevance for science policy and science policy studies | ||
650 | 4 | |a Ingenieurwissenschaften | |
650 | 4 | |a Sozialwissenschaften | |
650 | 4 | |a Social sciences | |
650 | 4 | |a Physics | |
650 | 4 | |a Engineering | |
650 | 4 | |a Social sciences / Methodology | |
650 | 4 | |a Social Sciences | |
650 | 4 | |a Methodology of the Social Sciences | |
650 | 4 | |a Socio- and Econophysics, Population and Evolutionary Models | |
650 | 4 | |a Information Systems Applications (incl. Internet) | |
650 | 4 | |a Complexity | |
650 | 0 | 7 | |a Wissenschaftsentwicklung |0 (DE-588)4079355-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mathematisches Modell |0 (DE-588)4114528-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Wissenschaftsentwicklung |0 (DE-588)4079355-2 |D s |
689 | 0 | 1 | |a Mathematisches Modell |0 (DE-588)4114528-8 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Scharnhorst, Andrea |e Sonstige |4 oth | |
700 | 1 | |a Börner, Katy |e Sonstige |4 oth | |
700 | 1 | |a Besselaar, Peter |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-642-23068-4 |x Verlag |3 Volltext |
912 | |a ZDB-2-PHA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-025730985 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1007/978-3-642-23068-4 |l TUM01 |p ZDB-2-PHA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-642-23068-4 |l UBT01 |p ZDB-2-PHA |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804150074551304192 |
---|---|
any_adam_object | |
building | Verbundindex |
bvnumber | BV040751233 |
classification_tum | PHY 000 |
collection | ZDB-2-PHA |
ctrlnum | (OCoLC)850968726 (DE-599)BVBBV040751233 |
dewey-full | 300.1 |
dewey-hundreds | 300 - Social sciences |
dewey-ones | 300 - Social sciences |
dewey-raw | 300.1 |
dewey-search | 300.1 |
dewey-sort | 3300.1 |
dewey-tens | 300 - Social sciences |
discipline | Physik Soziologie |
doi_str_mv | 10.1007/978-3-642-23068-4 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04392nmm a2200601zc 4500</leader><controlfield tag="001">BV040751233</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">130214s2012 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642230684</subfield><subfield code="9">978-3-642-23068-4</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-642-23068-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)850968726</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV040751233</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">300.1</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Models of Science Dynamics</subfield><subfield code="b">Encounters Between Complexity Theory and Information Sciences</subfield><subfield code="c">edited by Andrea Scharnhorst, Katy Börner, Peter Besselaar</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">2012</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Understanding Complex Systems</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Part I Foundations -- An Introduction to Modeling Science: Basic Model Types, Key Definitions, and a General Framework for the Comparison of Process Models -- Mathematical Approaches to Modeling Science From an Algorithmic-historiography Perspectice -- Part II Exemplary Model Type -- Knowledge Epidemics and Population Dynamics Models for Describing Idea Diffusion -- Agent-based Models of Science -- Evolutionary Game Theory and Complex Networks of Scientific Information -- Part III Exemplary Model Applications -- Dynamic Scientific Co-authorship Networks -- Citation Networks -- Part IV Outlook -- Science Policy and the Challenges for Modeling Science -- Index</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Models of science dynamics aim to capture the structure and evolution of science. They are developed in an emerging research area in which scholars, scientific institutions and scientific communications become themselves basic objects of research. In order to understand phenomena as diverse as the structure of evolving co-authorship networks or citation diffusion patterns, different models have been developed. They include conceptual models based on historical and ethnographic observations, mathematical descriptions of measurable phenomena, and computational algorithms. Despite its evident importance, the mathematical modeling of science still lacks a unifying framework and a comprehensive research agenda.This book aims to fill this gap, reviewing and describing major threads in the mathematical modeling of science dynamics for a wider academic and professional audience. The model classes presented here cover stochastic and statistical models, game-theoretic approaches, agent-based simulations, population-dynamics models, and complex network models. The book starts with a foundational chapter that defines and operationalizes terminology used in the study of science, and a review chapter that discusses the history of mathematical approaches to modeling science from an algorithmic-historiography perspective. It concludes with a survey of future challenges for science modeling and discusses their relevance for science policy and science policy studies</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ingenieurwissenschaften</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sozialwissenschaften</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Social sciences</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Social sciences / Methodology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Social Sciences</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Methodology of the Social Sciences</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Socio- and Econophysics, Population and Evolutionary Models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Information Systems Applications (incl. Internet)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Complexity</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Wissenschaftsentwicklung</subfield><subfield code="0">(DE-588)4079355-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematisches Modell</subfield><subfield code="0">(DE-588)4114528-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Wissenschaftsentwicklung</subfield><subfield code="0">(DE-588)4079355-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Mathematisches Modell</subfield><subfield code="0">(DE-588)4114528-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Scharnhorst, Andrea</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Börner, Katy</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Besselaar, Peter</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-642-23068-4</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-PHA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-025730985</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-642-23068-4</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-2-PHA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-642-23068-4</subfield><subfield code="l">UBT01</subfield><subfield code="p">ZDB-2-PHA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV040751233 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T00:33:08Z |
institution | BVB |
isbn | 9783642230684 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-025730985 |
oclc_num | 850968726 |
open_access_boolean | |
owner | DE-703 DE-91 DE-BY-TUM |
owner_facet | DE-703 DE-91 DE-BY-TUM |
physical | 1 Online-Ressource |
psigel | ZDB-2-PHA |
publishDate | 2012 |
publishDateSearch | 2012 |
publishDateSort | 2012 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
series2 | Understanding Complex Systems |
spelling | Models of Science Dynamics Encounters Between Complexity Theory and Information Sciences edited by Andrea Scharnhorst, Katy Börner, Peter Besselaar Berlin, Heidelberg Springer Berlin Heidelberg 2012 1 Online-Ressource txt rdacontent c rdamedia cr rdacarrier Understanding Complex Systems Part I Foundations -- An Introduction to Modeling Science: Basic Model Types, Key Definitions, and a General Framework for the Comparison of Process Models -- Mathematical Approaches to Modeling Science From an Algorithmic-historiography Perspectice -- Part II Exemplary Model Type -- Knowledge Epidemics and Population Dynamics Models for Describing Idea Diffusion -- Agent-based Models of Science -- Evolutionary Game Theory and Complex Networks of Scientific Information -- Part III Exemplary Model Applications -- Dynamic Scientific Co-authorship Networks -- Citation Networks -- Part IV Outlook -- Science Policy and the Challenges for Modeling Science -- Index Models of science dynamics aim to capture the structure and evolution of science. They are developed in an emerging research area in which scholars, scientific institutions and scientific communications become themselves basic objects of research. In order to understand phenomena as diverse as the structure of evolving co-authorship networks or citation diffusion patterns, different models have been developed. They include conceptual models based on historical and ethnographic observations, mathematical descriptions of measurable phenomena, and computational algorithms. Despite its evident importance, the mathematical modeling of science still lacks a unifying framework and a comprehensive research agenda.This book aims to fill this gap, reviewing and describing major threads in the mathematical modeling of science dynamics for a wider academic and professional audience. The model classes presented here cover stochastic and statistical models, game-theoretic approaches, agent-based simulations, population-dynamics models, and complex network models. The book starts with a foundational chapter that defines and operationalizes terminology used in the study of science, and a review chapter that discusses the history of mathematical approaches to modeling science from an algorithmic-historiography perspective. It concludes with a survey of future challenges for science modeling and discusses their relevance for science policy and science policy studies Ingenieurwissenschaften Sozialwissenschaften Social sciences Physics Engineering Social sciences / Methodology Social Sciences Methodology of the Social Sciences Socio- and Econophysics, Population and Evolutionary Models Information Systems Applications (incl. Internet) Complexity Wissenschaftsentwicklung (DE-588)4079355-2 gnd rswk-swf Mathematisches Modell (DE-588)4114528-8 gnd rswk-swf Wissenschaftsentwicklung (DE-588)4079355-2 s Mathematisches Modell (DE-588)4114528-8 s 1\p DE-604 Scharnhorst, Andrea Sonstige oth Börner, Katy Sonstige oth Besselaar, Peter Sonstige oth https://doi.org/10.1007/978-3-642-23068-4 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Models of Science Dynamics Encounters Between Complexity Theory and Information Sciences Ingenieurwissenschaften Sozialwissenschaften Social sciences Physics Engineering Social sciences / Methodology Social Sciences Methodology of the Social Sciences Socio- and Econophysics, Population and Evolutionary Models Information Systems Applications (incl. Internet) Complexity Wissenschaftsentwicklung (DE-588)4079355-2 gnd Mathematisches Modell (DE-588)4114528-8 gnd |
subject_GND | (DE-588)4079355-2 (DE-588)4114528-8 |
title | Models of Science Dynamics Encounters Between Complexity Theory and Information Sciences |
title_auth | Models of Science Dynamics Encounters Between Complexity Theory and Information Sciences |
title_exact_search | Models of Science Dynamics Encounters Between Complexity Theory and Information Sciences |
title_full | Models of Science Dynamics Encounters Between Complexity Theory and Information Sciences edited by Andrea Scharnhorst, Katy Börner, Peter Besselaar |
title_fullStr | Models of Science Dynamics Encounters Between Complexity Theory and Information Sciences edited by Andrea Scharnhorst, Katy Börner, Peter Besselaar |
title_full_unstemmed | Models of Science Dynamics Encounters Between Complexity Theory and Information Sciences edited by Andrea Scharnhorst, Katy Börner, Peter Besselaar |
title_short | Models of Science Dynamics |
title_sort | models of science dynamics encounters between complexity theory and information sciences |
title_sub | Encounters Between Complexity Theory and Information Sciences |
topic | Ingenieurwissenschaften Sozialwissenschaften Social sciences Physics Engineering Social sciences / Methodology Social Sciences Methodology of the Social Sciences Socio- and Econophysics, Population and Evolutionary Models Information Systems Applications (incl. Internet) Complexity Wissenschaftsentwicklung (DE-588)4079355-2 gnd Mathematisches Modell (DE-588)4114528-8 gnd |
topic_facet | Ingenieurwissenschaften Sozialwissenschaften Social sciences Physics Engineering Social sciences / Methodology Social Sciences Methodology of the Social Sciences Socio- and Econophysics, Population and Evolutionary Models Information Systems Applications (incl. Internet) Complexity Wissenschaftsentwicklung Mathematisches Modell |
url | https://doi.org/10.1007/978-3-642-23068-4 |
work_keys_str_mv | AT scharnhorstandrea modelsofsciencedynamicsencountersbetweencomplexitytheoryandinformationsciences AT bornerkaty modelsofsciencedynamicsencountersbetweencomplexitytheoryandinformationsciences AT besselaarpeter modelsofsciencedynamicsencountersbetweencomplexitytheoryandinformationsciences |