Three Dimensional Solar Cells Based on Optical Confinement Geometries:
Gespeichert in:
Format: | Elektronisch E-Book |
---|---|
Sprache: | English |
Veröffentlicht: |
New York, NY
Springer New York
2013
|
Schriftenreihe: | Springer Theses, Recognizing Outstanding Ph.D. Research
|
Schlagworte: | |
Online-Zugang: | TUM01 UBT01 Volltext |
Beschreibung: | Introduction -- Equivalent Circuit -- Optical Path in Cavity -- Spectral Response -- Individual Optical Confinement Geometry Device -- Integrated Optical Confinement Geometry Device -- Hybrid Optical Confinement Geometry Device -- Conclusion -- Appendices. Three dimensional (3D) optical geometries are becoming more common in the literature and lexicon of solar cells. Three Dimensional Solar Cells Based on Optical Confinement Geometries describes and reveals the basic operational nuances of 3D photovoltaics using three standard tools: Equivalent Circuit Models, Ray Tracing Optics in the Cavity, and Absorber Spectral Response. These tools aide in understanding experimental absorption profile and device parameters including Jsc, Voc, Fill Factor, and EQE. These methods also apply to individual optical confinement geometry device, integrated optical confinement geometry device, and hybrid optical confinement geometry device. Additionally, this book discusses the importance of these methods in achieving the goal of high efficiency solar cells and suggests a potential application in large-scale photovoltaics businesses, like solar farms. |
Beschreibung: | 1 Online-Ressource |
ISBN: | 9781461456995 |
DOI: | 10.1007/978-1-4614-5699-5 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV040751176 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 130214s2013 |||| o||u| ||||||eng d | ||
020 | |a 9781461456995 |9 978-1-4614-5699-5 | ||
024 | 7 | |a 10.1007/978-1-4614-5699-5 |2 doi | |
035 | |a (OCoLC)829740344 | ||
035 | |a (DE-599)BVBBV040751176 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-703 |a DE-91 | ||
082 | 0 | |a 621.36 | |
084 | |a PHY 000 |2 stub | ||
245 | 1 | 0 | |a Three Dimensional Solar Cells Based on Optical Confinement Geometries |c by Yuan Li |
264 | 1 | |a New York, NY |b Springer New York |c 2013 | |
300 | |a 1 Online-Ressource | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Springer Theses, Recognizing Outstanding Ph.D. Research | |
500 | |a Introduction -- Equivalent Circuit -- Optical Path in Cavity -- Spectral Response -- Individual Optical Confinement Geometry Device -- Integrated Optical Confinement Geometry Device -- Hybrid Optical Confinement Geometry Device -- Conclusion -- Appendices. | ||
500 | |a Three dimensional (3D) optical geometries are becoming more common in the literature and lexicon of solar cells. Three Dimensional Solar Cells Based on Optical Confinement Geometries describes and reveals the basic operational nuances of 3D photovoltaics using three standard tools: Equivalent Circuit Models, Ray Tracing Optics in the Cavity, and Absorber Spectral Response. These tools aide in understanding experimental absorption profile and device parameters including Jsc, Voc, Fill Factor, and EQE. These methods also apply to individual optical confinement geometry device, integrated optical confinement geometry device, and hybrid optical confinement geometry device. Additionally, this book discusses the importance of these methods in achieving the goal of high efficiency solar cells and suggests a potential application in large-scale photovoltaics businesses, like solar farms. | ||
650 | 4 | |a Physics | |
650 | 4 | |a Electric engineering | |
650 | 4 | |a Renewable energy sources | |
650 | 4 | |a Optics, Optoelectronics, Plasmonics and Optical Devices | |
650 | 4 | |a Energy Technology | |
650 | 4 | |a Semiconductors | |
650 | 4 | |a Energy Systems | |
650 | 4 | |a Renewable and Green Energy | |
700 | 1 | |a Li, Yuan |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4614-5699-5 |x Verlag |3 Volltext |
912 | |a ZDB-2-PHA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-025730928 | ||
966 | e | |u https://doi.org/10.1007/978-1-4614-5699-5 |l TUM01 |p ZDB-2-PHA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-1-4614-5699-5 |l UBT01 |p ZDB-2-PHA |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804150074442252288 |
---|---|
any_adam_object | |
building | Verbundindex |
bvnumber | BV040751176 |
classification_tum | PHY 000 |
collection | ZDB-2-PHA |
ctrlnum | (OCoLC)829740344 (DE-599)BVBBV040751176 |
dewey-full | 621.36 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 621 - Applied physics |
dewey-raw | 621.36 |
dewey-search | 621.36 |
dewey-sort | 3621.36 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Physik Elektrotechnik / Elektronik / Nachrichtentechnik |
doi_str_mv | 10.1007/978-1-4614-5699-5 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02711nmm a2200469zc 4500</leader><controlfield tag="001">BV040751176</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">130214s2013 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461456995</subfield><subfield code="9">978-1-4614-5699-5</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4614-5699-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)829740344</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV040751176</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">621.36</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Three Dimensional Solar Cells Based on Optical Confinement Geometries</subfield><subfield code="c">by Yuan Li</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer New York</subfield><subfield code="c">2013</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Springer Theses, Recognizing Outstanding Ph.D. Research</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Introduction -- Equivalent Circuit -- Optical Path in Cavity -- Spectral Response -- Individual Optical Confinement Geometry Device -- Integrated Optical Confinement Geometry Device -- Hybrid Optical Confinement Geometry Device -- Conclusion -- Appendices.</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Three dimensional (3D) optical geometries are becoming more common in the literature and lexicon of solar cells. Three Dimensional Solar Cells Based on Optical Confinement Geometries describes and reveals the basic operational nuances of 3D photovoltaics using three standard tools: Equivalent Circuit Models, Ray Tracing Optics in the Cavity, and Absorber Spectral Response. These tools aide in understanding experimental absorption profile and device parameters including Jsc, Voc, Fill Factor, and EQE. These methods also apply to individual optical confinement geometry device, integrated optical confinement geometry device, and hybrid optical confinement geometry device. Additionally, this book discusses the importance of these methods in achieving the goal of high efficiency solar cells and suggests a potential application in large-scale photovoltaics businesses, like solar farms.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electric engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Renewable energy sources</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optics, Optoelectronics, Plasmonics and Optical Devices</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Energy Technology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Semiconductors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Energy Systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Renewable and Green Energy</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Yuan</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4614-5699-5</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-PHA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-025730928</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4614-5699-5</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-2-PHA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4614-5699-5</subfield><subfield code="l">UBT01</subfield><subfield code="p">ZDB-2-PHA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV040751176 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T00:33:08Z |
institution | BVB |
isbn | 9781461456995 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-025730928 |
oclc_num | 829740344 |
open_access_boolean | |
owner | DE-703 DE-91 DE-BY-TUM |
owner_facet | DE-703 DE-91 DE-BY-TUM |
physical | 1 Online-Ressource |
psigel | ZDB-2-PHA |
publishDate | 2013 |
publishDateSearch | 2013 |
publishDateSort | 2013 |
publisher | Springer New York |
record_format | marc |
series2 | Springer Theses, Recognizing Outstanding Ph.D. Research |
spelling | Three Dimensional Solar Cells Based on Optical Confinement Geometries by Yuan Li New York, NY Springer New York 2013 1 Online-Ressource txt rdacontent c rdamedia cr rdacarrier Springer Theses, Recognizing Outstanding Ph.D. Research Introduction -- Equivalent Circuit -- Optical Path in Cavity -- Spectral Response -- Individual Optical Confinement Geometry Device -- Integrated Optical Confinement Geometry Device -- Hybrid Optical Confinement Geometry Device -- Conclusion -- Appendices. Three dimensional (3D) optical geometries are becoming more common in the literature and lexicon of solar cells. Three Dimensional Solar Cells Based on Optical Confinement Geometries describes and reveals the basic operational nuances of 3D photovoltaics using three standard tools: Equivalent Circuit Models, Ray Tracing Optics in the Cavity, and Absorber Spectral Response. These tools aide in understanding experimental absorption profile and device parameters including Jsc, Voc, Fill Factor, and EQE. These methods also apply to individual optical confinement geometry device, integrated optical confinement geometry device, and hybrid optical confinement geometry device. Additionally, this book discusses the importance of these methods in achieving the goal of high efficiency solar cells and suggests a potential application in large-scale photovoltaics businesses, like solar farms. Physics Electric engineering Renewable energy sources Optics, Optoelectronics, Plasmonics and Optical Devices Energy Technology Semiconductors Energy Systems Renewable and Green Energy Li, Yuan Sonstige oth https://doi.org/10.1007/978-1-4614-5699-5 Verlag Volltext |
spellingShingle | Three Dimensional Solar Cells Based on Optical Confinement Geometries Physics Electric engineering Renewable energy sources Optics, Optoelectronics, Plasmonics and Optical Devices Energy Technology Semiconductors Energy Systems Renewable and Green Energy |
title | Three Dimensional Solar Cells Based on Optical Confinement Geometries |
title_auth | Three Dimensional Solar Cells Based on Optical Confinement Geometries |
title_exact_search | Three Dimensional Solar Cells Based on Optical Confinement Geometries |
title_full | Three Dimensional Solar Cells Based on Optical Confinement Geometries by Yuan Li |
title_fullStr | Three Dimensional Solar Cells Based on Optical Confinement Geometries by Yuan Li |
title_full_unstemmed | Three Dimensional Solar Cells Based on Optical Confinement Geometries by Yuan Li |
title_short | Three Dimensional Solar Cells Based on Optical Confinement Geometries |
title_sort | three dimensional solar cells based on optical confinement geometries |
topic | Physics Electric engineering Renewable energy sources Optics, Optoelectronics, Plasmonics and Optical Devices Energy Technology Semiconductors Energy Systems Renewable and Green Energy |
topic_facet | Physics Electric engineering Renewable energy sources Optics, Optoelectronics, Plasmonics and Optical Devices Energy Technology Semiconductors Energy Systems Renewable and Green Energy |
url | https://doi.org/10.1007/978-1-4614-5699-5 |
work_keys_str_mv | AT liyuan threedimensionalsolarcellsbasedonopticalconfinementgeometries |