Simplicial matter in discrete and quantum spacetimes:
A discrete formalism for General Relativity was introduced in 1961 by Tulio Regge in the form of a piecewise-linear manifold as an approximation to (pseudo-)Riemannian manifolds. This formalism, known as Regge Calculus, has primarily been used to study vacuum spacetimes as both an approximation for...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Abschlussarbeit Buch |
Sprache: | English |
Veröffentlicht: |
Ann Arbor
ProQuest, UMI Dissertation Publ.
2009
|
Schlagworte: | |
Zusammenfassung: | A discrete formalism for General Relativity was introduced in 1961 by Tulio Regge in the form of a piecewise-linear manifold as an approximation to (pseudo-)Riemannian manifolds. This formalism, known as Regge Calculus, has primarily been used to study vacuum spacetimes as both an approximation for classical General Relativity and as a framework for quantum gravity. However, there has been no consistent effort to include arbitrary non-gravitational sources into Regge Calculus or examine the structural details of how this is done. This manuscript explores the underlying framework of Regge Calculus in an effort elucidate the structural properties of the lattice geometry most useful for incorporating particles and fields. Correspondingly, we first derive the contracted Bianchi identity as a guide towards understanding how particles and fields can be coupled to the lattice so as to automatically ensure conservation of source. In doing so, we derive a Kirchhoff-like conservation principle that identifies the flow of energy and momentum as a flux through the circumcentric dual boundaries. This circuit construction arises naturally from the topological structure suggested by the contracted Bianchi identity. Using the results of the contracted Bianchi identity we explore the generic properties of the local topology in Regge Calculus for arbitrary triangulations and suggest a first-principles definition that is consistent with the inclusion of source. This prescription for extending vacuum Regge Calculus is sufficiently general to be applicable to other approaches to discrete quantum gravity. We discuss how these findings bear on a quantized theory of gravity in which the coupling to source provides a physical interpretation for the approximate invariance principles of the discrete theory |
Beschreibung: | Bibliography: S. 92-95 |
Beschreibung: | viii, 95 S. Ill., graph. Darst. |
ISBN: | 9781243999122 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV040738015 | ||
003 | DE-604 | ||
005 | 20130313 | ||
007 | t | ||
008 | 130208s2009 ad|| m||| 00||| eng d | ||
020 | |a 9781243999122 |9 978-1-243-99912-2 | ||
035 | |a (OCoLC)835293632 | ||
035 | |a (DE-599)BVBBV040738015 | ||
040 | |a DE-604 |b ger | ||
041 | 0 | |a eng | |
049 | |a DE-384 | ||
084 | |a SK 950 |0 (DE-625)143273: |2 rvk | ||
100 | 1 | |a McDonald, Jonathan Ryan |e Verfasser |4 aut | |
245 | 1 | 0 | |a Simplicial matter in discrete and quantum spacetimes |c by Jonathan Ryan McDonald |
264 | 1 | |a Ann Arbor |b ProQuest, UMI Dissertation Publ. |c 2009 | |
300 | |a viii, 95 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
500 | |a Bibliography: S. 92-95 | ||
502 | |a Zugl.: Boca Raton, Charles E. Schmidt College of Science, Diss., 2009 | ||
520 | |a A discrete formalism for General Relativity was introduced in 1961 by Tulio Regge in the form of a piecewise-linear manifold as an approximation to (pseudo-)Riemannian manifolds. This formalism, known as Regge Calculus, has primarily been used to study vacuum spacetimes as both an approximation for classical General Relativity and as a framework for quantum gravity. However, there has been no consistent effort to include arbitrary non-gravitational sources into Regge Calculus or examine the structural details of how this is done. This manuscript explores the underlying framework of Regge Calculus in an effort elucidate the structural properties of the lattice geometry most useful for incorporating particles and fields. Correspondingly, we first derive the contracted Bianchi identity as a guide towards understanding how particles and fields can be coupled to the lattice so as to automatically ensure conservation of source. In doing so, we derive a Kirchhoff-like conservation principle that identifies the flow of energy and momentum as a flux through the circumcentric dual boundaries. This circuit construction arises naturally from the topological structure suggested by the contracted Bianchi identity. Using the results of the contracted Bianchi identity we explore the generic properties of the local topology in Regge Calculus for arbitrary triangulations and suggest a first-principles definition that is consistent with the inclusion of source. This prescription for extending vacuum Regge Calculus is sufficiently general to be applicable to other approaches to discrete quantum gravity. We discuss how these findings bear on a quantized theory of gravity in which the coupling to source provides a physical interpretation for the approximate invariance principles of the discrete theory | ||
600 | 1 | 4 | |a Tulio, Regge |
650 | 4 | |a Special relativity (Physics) | |
650 | 4 | |a Space and time | |
650 | 4 | |a Distribution (Probability theory) | |
650 | 4 | |a Global differential geometry | |
650 | 4 | |a Quantum field theory | |
650 | 4 | |a Mathematical physics | |
650 | 4 | |a Mathematische Physik | |
650 | 0 | 7 | |a Raum-Zeit |0 (DE-588)4302626-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mathematische Physik |0 (DE-588)4037952-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Relativitätstheorie |0 (DE-588)4049363-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Quantengravitation |0 (DE-588)4124012-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Differentialgeometrie |0 (DE-588)4012248-7 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4113937-9 |a Hochschulschrift |2 gnd-content | |
689 | 0 | 0 | |a Raum-Zeit |0 (DE-588)4302626-6 |D s |
689 | 0 | 1 | |a Relativitätstheorie |0 (DE-588)4049363-5 |D s |
689 | 0 | 2 | |a Quantengravitation |0 (DE-588)4124012-1 |D s |
689 | 0 | 3 | |a Differentialgeometrie |0 (DE-588)4012248-7 |D s |
689 | 0 | 4 | |a Mathematische Physik |0 (DE-588)4037952-8 |D s |
689 | 0 | |5 DE-604 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-025718000 |
Datensatz im Suchindex
_version_ | 1804150057259237376 |
---|---|
any_adam_object | |
author | McDonald, Jonathan Ryan |
author_facet | McDonald, Jonathan Ryan |
author_role | aut |
author_sort | McDonald, Jonathan Ryan |
author_variant | j r m jr jrm |
building | Verbundindex |
bvnumber | BV040738015 |
classification_rvk | SK 950 |
ctrlnum | (OCoLC)835293632 (DE-599)BVBBV040738015 |
discipline | Mathematik |
format | Thesis Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03790nam a2200541 c 4500</leader><controlfield tag="001">BV040738015</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20130313 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">130208s2009 ad|| m||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781243999122</subfield><subfield code="9">978-1-243-99912-2</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)835293632</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV040738015</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 950</subfield><subfield code="0">(DE-625)143273:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">McDonald, Jonathan Ryan</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Simplicial matter in discrete and quantum spacetimes</subfield><subfield code="c">by Jonathan Ryan McDonald</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Ann Arbor</subfield><subfield code="b">ProQuest, UMI Dissertation Publ.</subfield><subfield code="c">2009</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">viii, 95 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Bibliography: S. 92-95</subfield></datafield><datafield tag="502" ind1=" " ind2=" "><subfield code="a">Zugl.: Boca Raton, Charles E. Schmidt College of Science, Diss., 2009</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A discrete formalism for General Relativity was introduced in 1961 by Tulio Regge in the form of a piecewise-linear manifold as an approximation to (pseudo-)Riemannian manifolds. This formalism, known as Regge Calculus, has primarily been used to study vacuum spacetimes as both an approximation for classical General Relativity and as a framework for quantum gravity. However, there has been no consistent effort to include arbitrary non-gravitational sources into Regge Calculus or examine the structural details of how this is done. This manuscript explores the underlying framework of Regge Calculus in an effort elucidate the structural properties of the lattice geometry most useful for incorporating particles and fields. Correspondingly, we first derive the contracted Bianchi identity as a guide towards understanding how particles and fields can be coupled to the lattice so as to automatically ensure conservation of source. In doing so, we derive a Kirchhoff-like conservation principle that identifies the flow of energy and momentum as a flux through the circumcentric dual boundaries. This circuit construction arises naturally from the topological structure suggested by the contracted Bianchi identity. Using the results of the contracted Bianchi identity we explore the generic properties of the local topology in Regge Calculus for arbitrary triangulations and suggest a first-principles definition that is consistent with the inclusion of source. This prescription for extending vacuum Regge Calculus is sufficiently general to be applicable to other approaches to discrete quantum gravity. We discuss how these findings bear on a quantized theory of gravity in which the coupling to source provides a physical interpretation for the approximate invariance principles of the discrete theory</subfield></datafield><datafield tag="600" ind1="1" ind2="4"><subfield code="a">Tulio, Regge</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Special relativity (Physics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Space and time</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Distribution (Probability theory)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global differential geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum field theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematische Physik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Raum-Zeit</subfield><subfield code="0">(DE-588)4302626-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematische Physik</subfield><subfield code="0">(DE-588)4037952-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Relativitätstheorie</subfield><subfield code="0">(DE-588)4049363-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Quantengravitation</subfield><subfield code="0">(DE-588)4124012-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Differentialgeometrie</subfield><subfield code="0">(DE-588)4012248-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4113937-9</subfield><subfield code="a">Hochschulschrift</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Raum-Zeit</subfield><subfield code="0">(DE-588)4302626-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Relativitätstheorie</subfield><subfield code="0">(DE-588)4049363-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Quantengravitation</subfield><subfield code="0">(DE-588)4124012-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Differentialgeometrie</subfield><subfield code="0">(DE-588)4012248-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="4"><subfield code="a">Mathematische Physik</subfield><subfield code="0">(DE-588)4037952-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-025718000</subfield></datafield></record></collection> |
genre | (DE-588)4113937-9 Hochschulschrift gnd-content |
genre_facet | Hochschulschrift |
id | DE-604.BV040738015 |
illustrated | Illustrated |
indexdate | 2024-07-10T00:32:52Z |
institution | BVB |
isbn | 9781243999122 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-025718000 |
oclc_num | 835293632 |
open_access_boolean | |
owner | DE-384 |
owner_facet | DE-384 |
physical | viii, 95 S. Ill., graph. Darst. |
publishDate | 2009 |
publishDateSearch | 2009 |
publishDateSort | 2009 |
publisher | ProQuest, UMI Dissertation Publ. |
record_format | marc |
spelling | McDonald, Jonathan Ryan Verfasser aut Simplicial matter in discrete and quantum spacetimes by Jonathan Ryan McDonald Ann Arbor ProQuest, UMI Dissertation Publ. 2009 viii, 95 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Bibliography: S. 92-95 Zugl.: Boca Raton, Charles E. Schmidt College of Science, Diss., 2009 A discrete formalism for General Relativity was introduced in 1961 by Tulio Regge in the form of a piecewise-linear manifold as an approximation to (pseudo-)Riemannian manifolds. This formalism, known as Regge Calculus, has primarily been used to study vacuum spacetimes as both an approximation for classical General Relativity and as a framework for quantum gravity. However, there has been no consistent effort to include arbitrary non-gravitational sources into Regge Calculus or examine the structural details of how this is done. This manuscript explores the underlying framework of Regge Calculus in an effort elucidate the structural properties of the lattice geometry most useful for incorporating particles and fields. Correspondingly, we first derive the contracted Bianchi identity as a guide towards understanding how particles and fields can be coupled to the lattice so as to automatically ensure conservation of source. In doing so, we derive a Kirchhoff-like conservation principle that identifies the flow of energy and momentum as a flux through the circumcentric dual boundaries. This circuit construction arises naturally from the topological structure suggested by the contracted Bianchi identity. Using the results of the contracted Bianchi identity we explore the generic properties of the local topology in Regge Calculus for arbitrary triangulations and suggest a first-principles definition that is consistent with the inclusion of source. This prescription for extending vacuum Regge Calculus is sufficiently general to be applicable to other approaches to discrete quantum gravity. We discuss how these findings bear on a quantized theory of gravity in which the coupling to source provides a physical interpretation for the approximate invariance principles of the discrete theory Tulio, Regge Special relativity (Physics) Space and time Distribution (Probability theory) Global differential geometry Quantum field theory Mathematical physics Mathematische Physik Raum-Zeit (DE-588)4302626-6 gnd rswk-swf Mathematische Physik (DE-588)4037952-8 gnd rswk-swf Relativitätstheorie (DE-588)4049363-5 gnd rswk-swf Quantengravitation (DE-588)4124012-1 gnd rswk-swf Differentialgeometrie (DE-588)4012248-7 gnd rswk-swf (DE-588)4113937-9 Hochschulschrift gnd-content Raum-Zeit (DE-588)4302626-6 s Relativitätstheorie (DE-588)4049363-5 s Quantengravitation (DE-588)4124012-1 s Differentialgeometrie (DE-588)4012248-7 s Mathematische Physik (DE-588)4037952-8 s DE-604 |
spellingShingle | McDonald, Jonathan Ryan Simplicial matter in discrete and quantum spacetimes Tulio, Regge Special relativity (Physics) Space and time Distribution (Probability theory) Global differential geometry Quantum field theory Mathematical physics Mathematische Physik Raum-Zeit (DE-588)4302626-6 gnd Mathematische Physik (DE-588)4037952-8 gnd Relativitätstheorie (DE-588)4049363-5 gnd Quantengravitation (DE-588)4124012-1 gnd Differentialgeometrie (DE-588)4012248-7 gnd |
subject_GND | (DE-588)4302626-6 (DE-588)4037952-8 (DE-588)4049363-5 (DE-588)4124012-1 (DE-588)4012248-7 (DE-588)4113937-9 |
title | Simplicial matter in discrete and quantum spacetimes |
title_auth | Simplicial matter in discrete and quantum spacetimes |
title_exact_search | Simplicial matter in discrete and quantum spacetimes |
title_full | Simplicial matter in discrete and quantum spacetimes by Jonathan Ryan McDonald |
title_fullStr | Simplicial matter in discrete and quantum spacetimes by Jonathan Ryan McDonald |
title_full_unstemmed | Simplicial matter in discrete and quantum spacetimes by Jonathan Ryan McDonald |
title_short | Simplicial matter in discrete and quantum spacetimes |
title_sort | simplicial matter in discrete and quantum spacetimes |
topic | Tulio, Regge Special relativity (Physics) Space and time Distribution (Probability theory) Global differential geometry Quantum field theory Mathematical physics Mathematische Physik Raum-Zeit (DE-588)4302626-6 gnd Mathematische Physik (DE-588)4037952-8 gnd Relativitätstheorie (DE-588)4049363-5 gnd Quantengravitation (DE-588)4124012-1 gnd Differentialgeometrie (DE-588)4012248-7 gnd |
topic_facet | Tulio, Regge Special relativity (Physics) Space and time Distribution (Probability theory) Global differential geometry Quantum field theory Mathematical physics Mathematische Physik Raum-Zeit Relativitätstheorie Quantengravitation Differentialgeometrie Hochschulschrift |
work_keys_str_mv | AT mcdonaldjonathanryan simplicialmatterindiscreteandquantumspacetimes |