Dalla geometria di Euclide alla geometria dell'Universo: Geometria su sfera, cilindro, cono, pseudosfera
Gespeichert in:
Format: | Elektronisch E-Book |
---|---|
Sprache: | Italian |
Veröffentlicht: |
Milano
Springer
2012
|
Schriftenreihe: | Convergenze
|
Online-Zugang: | BTU01 TUM01 UBA01 UBM01 UBT01 UBW01 UER01 UPA01 Volltext |
Beschreibung: | 1 Online-Ressource |
ISBN: | 9788847025738 9788847025745 |
DOI: | 10.1007/978-88-470-2574-5 |
Internformat
MARC
LEADER | 00000nmm a2200000 c 4500 | ||
---|---|---|---|
001 | BV040723225 | ||
003 | DE-604 | ||
005 | 20130226 | ||
007 | cr|uuu---uuuuu | ||
008 | 130204s2012 |||| o||u| ||||||ita d | ||
020 | |a 9788847025738 |9 978-88-470-2573-8 | ||
020 | |a 9788847025745 |c Online |9 978-88-470-2574-5 | ||
024 | 7 | |a 10.1007/978-88-470-2574-5 |2 doi | |
035 | |a (OCoLC)864089680 | ||
035 | |a (DE-599)GBV733282067 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a ita | |
049 | |a DE-29 |a DE-634 |a DE-20 |a DE-703 |a DE-19 |a DE-91 |a DE-739 |a DE-384 |a DE-83 | ||
084 | |a MAT 000 |2 stub | ||
245 | 1 | 0 | |a Dalla geometria di Euclide alla geometria dell'Universo |b Geometria su sfera, cilindro, cono, pseudosfera |c Ferdinando Arzarello ... |
264 | 1 | |a Milano |b Springer |c 2012 | |
300 | |a 1 Online-Ressource | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Convergenze | |
700 | 1 | |a Arzarello, Ferdinando |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-88-470-2574-5 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-025703388 | ||
966 | e | |u https://doi.org/10.1007/978-88-470-2574-5 |l BTU01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-88-470-2574-5 |l TUM01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-88-470-2574-5 |l UBA01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-88-470-2574-5 |l UBM01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-88-470-2574-5 |l UBT01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-88-470-2574-5 |l UBW01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-88-470-2574-5 |l UER01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-88-470-2574-5 |l UPA01 |p ZDB-2-SMA |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804150033944150016 |
---|---|
any_adam_object | |
building | Verbundindex |
bvnumber | BV040723225 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA |
ctrlnum | (OCoLC)864089680 (DE-599)GBV733282067 |
discipline | Mathematik |
doi_str_mv | 10.1007/978-88-470-2574-5 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01867nmm a2200421 c 4500</leader><controlfield tag="001">BV040723225</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20130226 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">130204s2012 |||| o||u| ||||||ita d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9788847025738</subfield><subfield code="9">978-88-470-2573-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9788847025745</subfield><subfield code="c">Online</subfield><subfield code="9">978-88-470-2574-5</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-88-470-2574-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)864089680</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBV733282067</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">ita</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-29</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Dalla geometria di Euclide alla geometria dell'Universo</subfield><subfield code="b">Geometria su sfera, cilindro, cono, pseudosfera</subfield><subfield code="c">Ferdinando Arzarello ...</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Milano</subfield><subfield code="b">Springer</subfield><subfield code="c">2012</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Convergenze</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Arzarello, Ferdinando</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-88-470-2574-5</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-025703388</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-88-470-2574-5</subfield><subfield code="l">BTU01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-88-470-2574-5</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-88-470-2574-5</subfield><subfield code="l">UBA01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-88-470-2574-5</subfield><subfield code="l">UBM01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-88-470-2574-5</subfield><subfield code="l">UBT01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-88-470-2574-5</subfield><subfield code="l">UBW01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-88-470-2574-5</subfield><subfield code="l">UER01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-88-470-2574-5</subfield><subfield code="l">UPA01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV040723225 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T00:32:30Z |
institution | BVB |
isbn | 9788847025738 9788847025745 |
language | Italian |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-025703388 |
oclc_num | 864089680 |
open_access_boolean | |
owner | DE-29 DE-634 DE-20 DE-703 DE-19 DE-BY-UBM DE-91 DE-BY-TUM DE-739 DE-384 DE-83 |
owner_facet | DE-29 DE-634 DE-20 DE-703 DE-19 DE-BY-UBM DE-91 DE-BY-TUM DE-739 DE-384 DE-83 |
physical | 1 Online-Ressource |
psigel | ZDB-2-SMA |
publishDate | 2012 |
publishDateSearch | 2012 |
publishDateSort | 2012 |
publisher | Springer |
record_format | marc |
series2 | Convergenze |
spelling | Dalla geometria di Euclide alla geometria dell'Universo Geometria su sfera, cilindro, cono, pseudosfera Ferdinando Arzarello ... Milano Springer 2012 1 Online-Ressource txt rdacontent c rdamedia cr rdacarrier Convergenze Arzarello, Ferdinando Sonstige oth https://doi.org/10.1007/978-88-470-2574-5 Verlag Volltext |
spellingShingle | Dalla geometria di Euclide alla geometria dell'Universo Geometria su sfera, cilindro, cono, pseudosfera |
title | Dalla geometria di Euclide alla geometria dell'Universo Geometria su sfera, cilindro, cono, pseudosfera |
title_auth | Dalla geometria di Euclide alla geometria dell'Universo Geometria su sfera, cilindro, cono, pseudosfera |
title_exact_search | Dalla geometria di Euclide alla geometria dell'Universo Geometria su sfera, cilindro, cono, pseudosfera |
title_full | Dalla geometria di Euclide alla geometria dell'Universo Geometria su sfera, cilindro, cono, pseudosfera Ferdinando Arzarello ... |
title_fullStr | Dalla geometria di Euclide alla geometria dell'Universo Geometria su sfera, cilindro, cono, pseudosfera Ferdinando Arzarello ... |
title_full_unstemmed | Dalla geometria di Euclide alla geometria dell'Universo Geometria su sfera, cilindro, cono, pseudosfera Ferdinando Arzarello ... |
title_short | Dalla geometria di Euclide alla geometria dell'Universo |
title_sort | dalla geometria di euclide alla geometria dell universo geometria su sfera cilindro cono pseudosfera |
title_sub | Geometria su sfera, cilindro, cono, pseudosfera |
url | https://doi.org/10.1007/978-88-470-2574-5 |
work_keys_str_mv | AT arzarelloferdinando dallageometriadieuclideallageometriadelluniversogeometriasusferacilindroconopseudosfera |