Risk assessment and decision analysis with Bayesian networks:
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Boca Raton, Fla. [u.a.]
CRC Press
2013
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XIX, 503 S. graph. Darst. |
ISBN: | 9781439809105 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV040704525 | ||
003 | DE-604 | ||
005 | 20150326 | ||
007 | t | ||
008 | 130128s2013 xxud||| |||| 00||| eng d | ||
010 | |a 2012015766 | ||
020 | |a 9781439809105 |c hardcover : alk. paper |9 978-1-4398-0910-5 | ||
035 | |a (OCoLC)826288160 | ||
035 | |a (DE-599)BVBBV040704525 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
044 | |a xxu |c US | ||
049 | |a DE-91G |a DE-91 |a DE-384 |a DE-M347 | ||
050 | 0 | |a QA279.5 | |
082 | 0 | |a 519.5/42 | |
084 | |a QH 233 |0 (DE-625)141548: |2 rvk | ||
084 | |a SK 830 |0 (DE-625)143259: |2 rvk | ||
084 | |a MAT 624f |2 stub | ||
084 | |a WIR 170f |2 stub | ||
100 | 1 | |a Fenton, Norman E. |d 1956- |e Verfasser |0 (DE-588)172073669 |4 aut | |
245 | 1 | 0 | |a Risk assessment and decision analysis with Bayesian networks |c Norman Fenton ; Martin Neil |
264 | 1 | |a Boca Raton, Fla. [u.a.] |b CRC Press |c 2013 | |
300 | |a XIX, 503 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 4 | |a Bayesian statistical decision theory | |
650 | 4 | |a Decision making | |
650 | 4 | |a Risk management | |
650 | 0 | 7 | |a Risikoanalyse |0 (DE-588)4137042-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Bayes-Entscheidungstheorie |0 (DE-588)4144220-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Entscheidungstheorie |0 (DE-588)4138606-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Bayes-Netz |0 (DE-588)4567228-3 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Bayes-Entscheidungstheorie |0 (DE-588)4144220-9 |D s |
689 | 0 | 1 | |a Bayes-Netz |0 (DE-588)4567228-3 |D s |
689 | 0 | 2 | |a Entscheidungstheorie |0 (DE-588)4138606-1 |D s |
689 | 0 | 3 | |a Risikoanalyse |0 (DE-588)4137042-9 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Bayes-Entscheidungstheorie |0 (DE-588)4144220-9 |D s |
689 | 1 | |5 DE-604 | |
700 | 1 | |a Neil, Martin |d 19XX- |e Verfasser |0 (DE-588)1029799776 |4 aut | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=025684988&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-025684988 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804150008606359552 |
---|---|
adam_text | Titel: Risk assessment and decision analysis with Bayesian networks
Autor: Fenton, Norman E
Jahr: 2013
Contents
Foreword.......................................................................................................................................................xi
Preface........................................................................................................................................................xiii
Acknowledgments......................................................................................................................................xvii
Authors........................................................................................................................................................xix
Chapter 1 There Is More to Assessing Risk Than Statistics...................................................................1
1.1 Introduction..................................................................................................................1
1.2 Predicting Economic Growth: The Normal Distribution and Its Limitations.............3
1.3 Patterns and Randomness: From School League Tables to Siegfried and Roy...........7
1.4 Dubious Relationships: Why You Should Be Very Wary of Correlations and
Their Significance Values..........................................................................................10
1.5 Spurious Correlations: How You Can Always Find a Silly Cause of Exam
Success.......................................................................................................................14
1.6 The Danger of Regression: Looking Back When You Need to Look Forward.........16
1.7 The Danger of Averages.............................................................................................18
1.7.1 What Type of Average?.................................................................................19
1.7.2 When Averages Alone Will Never Be Sufficient for Decision Making........20
1.8 When Simpson s Paradox Becomes More Worrisome...............................................21
1.9 Uncertain Information and Incomplete Information: Do Not Assume They Are
Different.....................................................................................................................23
1.10 Do Not Trust Anybody (Even Experts) to Properly Reason about Probabilities.......26
1.11 Chapter Summary......................................................................................................29
Further Reading....................................................................................................................29
Chapter 2 The Need for Causal, Explanatory Models in Risk Assessment..........................................31
2.1 Introduction................................................................................................................31
2.2 Are You More Likely to Die in an Automobile Crash When the Weather Is
Good Compared to Bad?............................................................................................31
2.3 When Ideology and Causation Collide.......................................................................35
2.4 The Limitations of Common Approaches to Risk Assessment.................................37
2.4.1 Measuring Armageddon and Other Risks....................................................37
2.4.2 Risks and Opportunities................................................................................39
2.4.3 Risk Registers and Heat Maps......................................................................40
2.5 Thinking about Risk Using Causal Analysis.............................................................42
2.6 Applying the Causal Framework to Armageddon......................................................46
2.7 Summary....................................................................................................................49
Further Reading....................................................................................................................49
Chapter 3 Measuring Uncertainty: The Inevitability of Subjectivity....................................................51
3.1 Introduction................................................................................................................51
3.2 Experiments, Outcomes, and Events..........................................................................52
3.2.1 Multiple Experiments....................................................................................56
3.2.2 Joint Experiments..........................................................................................57
3.2.3 Joint Events and Marginalization..................................................................58
3.3 Frequentist versus Subjective View of Uncertainty...................................................60
3.4 Summary....................................................................................................................67
Further Reading.....................................................................................................................68
Chapter 4 The Basics of Probability......................................................................................................69
4.1 Introduction................................................................................................................69
4.2 Some Observations Leading to Axioms and Theorems of Probability.....................69
4.3 Probability Distributions............................................................................................81
4.3.1 Probability Distributions with Infinite Outcomes.........................................83
4.3.2 Joint Probability Distributions and Probability of Marginalized Events......85
4.3.3 Dealing with More than Two Variables........................................................88
4.4 Independent Events and Conditional Probability.......................................................89
4.5 Binomial Distribution.................................................................................................96
4.6 Using Simple Probability Theory to Solve Earlier Problems and Explain
Widespread Misunderstandings...............................................................................101
4.6.1 The Birthday Problem.................................................................................101
4.6.2 The Monty Hall Problem............................................................................103
4.6.3 When Incredible Events Are Really Mundane...........................................105
4.6.4 When Mundane Events Really Are Quite Incredible.................................109
4.7 Summary..................................................................................................................110
Further Reading..................................................................................................................111
Chapter 5 Bayes Theorem and Conditional Probability.....................................................................113
5.1 Introduction..............................................................................................................113
5.2 All Probabilities Are Conditional............................................................................113
5.3 Bayes Theorem........................................................................................................116
5.4 Using Bayes Theorem to Debunk Some Probability Fallacies...............................121
5.4.1 Traditional Statistical Hypothesis Testing..................................................122
5.4.2 The Prosecutor Fallacy Revisited...............................................................124
5.4.3 The Defendant s Fallacy.............................................................................124
5.4.4 Odds Form of Bayes and the Likelihood Ratio..........................................125
5.5 Second-Order Probability........................................................................................127
5.6 Summary..................................................................................................................129
Further Reading..................................................................................................................129
Chapter 6 From Bayes Theorem to Bayesian Networks.....................................................................131
6.1 Introduction..............................................................................................................131
6.2 A Very Simple Risk Assessment Problem...............................................................132
6.3 Accounting for Multiple Causes (and Effects).........................................................134
6.4 Using Propagation to Make Special Types of Reasoning Possible..........................137
6.5 The Crucial Independence Assumptions.................................................................139
6.6 Structural Properties of BNs....................................................................................144
6.6.1 Serial Connection: Causal and Evidential Trails........................................144
6.6.2 Diverging Connection: Common Cause.....................................................147
6.6.3 Converging Connection: Common Effect...................................................149
6.6.4 Determining Whether Any Two Nodes in a BN Are Dependent...............151
6.7 Propagation in Bayesian Networks...........................................................................153
6.8 Using BNs to Explain Apparent Paradoxes..............................................................156
6.8.1 Revisiting the Monty Hall Problem............................................................156
6.8.1.1 Simple Solution............................................................................156
6.8.1.2 Complex Solution........................................................................157
6.8.2 Revisiting Simpson s Paradox.....................................................................161
6.9 Steps in Building and Running a BN Model............................................................162
6.9.1 Building a BN Model..................................................................................162
6.9.2 Running a BN Model..................................................................................166
6.9.3 Inconsistent Evidence..................................................................................168
6.10 Summary..................................................................................................................169
Further Reading..................................................................................................................169
Theoretical Underpinnings.......................................................................................169
BN Applications.......................................................................................................169
Nature and Theory of Causality...............................................................................170
Uncertain Evidence (Soft and Virtual).....................................................................170
Chapter 7 Defining the Structure of Bayesian Networks....................................................................171
7.1 Introduction..............................................................................................................171
7.2 Causal Inference and Choosing the Correct Edge Direction...................................172
7.3 The Idioms................................................................................................................174
7.3.1 The Cause-Consequence Idiom.................................................................175
7.3.2 Measurement Idiom....................................................................................177
7.3.3 Definitional/Synthesis Idiom.......................................................................184
7.3.3.1 Case 1: Definitional Relationship between Variables..................184
7.3.3.2 Case 2: Hierarchical Definitions.................................................184
7.3.3.3 Case 3: Combining Different Nodes Together to Reduce
Effects of Combinatorial Explosion ( Divorcing )........................185
7.3.4 Induction Idiom...........................................................................................188
7.4 The Problems of Asymmetry and How to Tackle Them.........................................190
7.4.1 Impossible Paths..........................................................................................190
7.4.2 Mutually Exclusive Paths............................................................................192
7.4.3 Distinct Causal Pathways............................................................................194
7.4.4 Taxonomic Classification............................................................................196
7.5 Multiobject Bayesian Network Models....................................................................202
7.6 The Missing Variable Fallacy..................................................................................207
7.7 Conclusions..............................................................................................................212
Further Reading..................................................................................................................213
Chapter 8 Building and Eliciting Node Probability Tables.................................................................215
8.1 Introduction..............................................................................................................215
8.2 Factorial Growth in the Size of Probability Tables..................................................215
8.3 Labeled Nodes and Comparative Expressions.........................................................217
8.4 Boolean Nodes and Functions..................................................................................221
8.4.1 The Asia Model...........................................................................................222
8.4.2 The OR Function for Boolean Nodes..........................................................227
8.4.3 The AND Function for Boolean Nodes......................................................234
8.4.4 M from N Operator......................................................................................235
8.4.5 NoisyOR Function for Boolean Nodes.......................................................236
8.4.6 Weighted Averages......................................................................................241
8.5 Ranked Nodes..........................................................................................................244
8.5.1 Background.................................................................................................244
8.5.2 Solution: Ranked Nodes with the TNormal Distribution...........................246
8.5.3 Alternative Weighted Functions for Ranked Nodes...................................252
8.5.4 Hints and Tips When Working with Ranked Nodes and NPTs..................255
8.5.4.1 Tip 1: Use the Weighted Functions as Far as Possible................255
8.5.4.2 Tip 2: Make Use of the Fact That a Ranked Node Parent Has
an Underlying Numerical Scale...................................................255
8.5.4.3 Tip 3: Do Not Forget the Importance of the Variance in the
TNormal Distribution..................................................................256
8.5.4.4 Tip 4: Change the Granularity of a Ranked Scale without
Having to Make Any Other Changes..........................................259
8.5.4.5 Tip 5: Do Not Create Large, Deep, Hierarchies Consisting of
Rank Nodes.................................................................................260
8.6 Elicitation.................................................................................................................260
8.6.1 Elicitation Protocols and Cognitive Biases.................................................260
8.6.2 Scoring Rules and Validation......................................................................263
8.6.3 Sensitivity Analysis.....................................................................................264
8.7 Summary..................................................................................................................265
Further Reading..................................................................................................................265
Chapter 9 Numeric Variables and Continuous Distribution Functions...............................................267
9.1 Introduction..............................................................................................................267
9.2 Some Theory on Functions and Continuous Distributions......................................268
9.3 Static Discretization.................................................................................................273
9.4 Dynamic Discretization...........................................................................................280
9.5 Using Dynamic Discretization.................................................................................283
9.5.1 Prediction Using Dynamic Discretization..................................................283
9.5.2 Conditioning on Discrete Evidence............................................................287
9.5.3 Parameter Learning (Induction) Using Dynamic Discretization................289
9.5.3.1 Classical versus Bayesian Modeling............................................289
9.5.3.2 Bayesian Hierarchical Model Using Beta-Binomial...................294
9.6 Avoiding Common Problems When Using Numeric Nodes....................................300
9.6.1 Unintentional Negative Values in a Node s State Range............................300
9.6.2 Potential Division by Zero..........................................................................301
9.6.3 Using Unbounded Distributions on a Bounded Range...............................301
9.6.4 Observations with Very Low Probability...................................................302
9.7 Summary..................................................................................................................303
Further Reading..................................................................................................................303
Chapter 10 Hypothesis Testing and Confidence Intervals.....................................................................305
10.1 Introduction..............................................................................................................305
10.2 Hypothesis Testing...................................................................................................305
10.2.1 Bayes Factors...............................................................................................306
10.2.2 Testing for Hypothetical Differences..........................................................308
10.2.3 Comparing Bayesian and Classical Hypothesis Testing.............................311
10.2.4 Model Comparison: Choosing the Best Predictive Model..........................315
10.2.5 Accommodating Expert Judgments about Hypotheses..............................322
10.2.6 Distribution Fitting as Hypothesis Testing..................................................325
10.2.7 Bayesian Model Comparison and Complex Causal Hypotheses................326
10.3 Confidence Intervals.................................................................................................333
10.3.1 The Fallacy of Frequentist Confidence Intervals........................................333
10.3.2 The Bayesian Alternative to Confidence Intervals.....................................337
10.4 Summary..................................................................................................................340
Further Reading..................................................................................................................341
Chapter 11 Modeling Operational Risk.................................................................................................343
11.1 Introduction..............................................................................................................343
11.2 The Swiss Cheese Model for Rare Catastrophic Events..........................................344
11.3 Bow Ties and Hazards..............................................................................................347
11.4 Fault Tree Analysis (FTA)........................................................................................348
11.5 Event Tree Analysis (ETA).......................................................................................354
11.6 Soft Systems, Causal Models, and Risk Arguments................................................357
11.7 KUUUB Factors.......................................................................................................362
11.8 Operational Risk in Finance....................................................................................364
11.8.1 Modeling the Operational Loss Generation Process..................................364
11.8.2 Scenarios and Stress Testing.......................................................................372
11.9 Summary..................................................................................................................375
Further Reading..................................................................................................................376
Chapter 12 Systems Reliability Modeling.............................................................................................377
12.1 Introduction..............................................................................................................377
12.2 Probability of Failure on Demand for Discrete Use Systems..................................378
12.3 Time to Failure for Continuous Use Systems...........................................................380
12.4 System Failure Diagnosis and Dynamic Bayesian Networks..................................383
12.5 Dynamic Fault Trees (DFTs)....................................................................................387
12.6 Software Defect Prediction......................................................................................395
12.7 Summary..................................................................................................................404
Further Reading..................................................................................................................404
Chapter 13 Bayes and the Law..............................................................................................................407
13.1 Introduction..............................................................................................................407
13.2 The Case for Bayesian Reasoning about Legal Evidence........................................408
13.3 Building Legal Arguments Using Idioms................................................................411
13.3.1 The Evidence Idiom....................................................................................411
13.3.2 The Evidence Accuracy Idiom....................................................................414
13.3.3 Idioms to Deal with the Key Notions of Motive and Opportunity ......417
13.3.4 Idiom for Modeling Dependency between Different Pieces of Evidence... 420
13.3.5 Alibi Evidence Idiom..................................................................................422
13.3.6 Explaining away Idiom...............................................................................425
13.4 Putting it All Together: Vole Example.....................................................................428
13.5 Using BNs to Expose Further Fallacies of Legal Reasoning...................................433
13.5.1 The Jury Observation Fallacy.....................................................................433
13.5.2 The Crimewatch UK Fallacy...................................................................435
13.6 Summary..................................................................................................................438
Further Reading...................................................................................................................438
Appendix A: The Basics of Counting.....................................................................................................441
Appendix B: The Algebra of Node Probability Tables.........................................................................449
Appendix C: Junction Tree Algorithm..................................................................................................455
Appendix D: Dynamic Discretization....................................................................................................465
Appendix E: Statistical Distributions....................................................................................................483
Index..........................................................................................................................................................495
|
any_adam_object | 1 |
author | Fenton, Norman E. 1956- Neil, Martin 19XX- |
author_GND | (DE-588)172073669 (DE-588)1029799776 |
author_facet | Fenton, Norman E. 1956- Neil, Martin 19XX- |
author_role | aut aut |
author_sort | Fenton, Norman E. 1956- |
author_variant | n e f ne nef m n mn |
building | Verbundindex |
bvnumber | BV040704525 |
callnumber-first | Q - Science |
callnumber-label | QA279 |
callnumber-raw | QA279.5 |
callnumber-search | QA279.5 |
callnumber-sort | QA 3279.5 |
callnumber-subject | QA - Mathematics |
classification_rvk | QH 233 SK 830 |
classification_tum | MAT 624f WIR 170f |
ctrlnum | (OCoLC)826288160 (DE-599)BVBBV040704525 |
dewey-full | 519.5/42 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.5/42 |
dewey-search | 519.5/42 |
dewey-sort | 3519.5 242 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik Wirtschaftswissenschaften |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02224nam a2200553 c 4500</leader><controlfield tag="001">BV040704525</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20150326 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">130128s2013 xxud||| |||| 00||| eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">2012015766</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781439809105</subfield><subfield code="c">hardcover : alk. paper</subfield><subfield code="9">978-1-4398-0910-5</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)826288160</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV040704525</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-M347</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA279.5</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.5/42</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QH 233</subfield><subfield code="0">(DE-625)141548:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 830</subfield><subfield code="0">(DE-625)143259:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 624f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">WIR 170f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Fenton, Norman E.</subfield><subfield code="d">1956-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)172073669</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Risk assessment and decision analysis with Bayesian networks</subfield><subfield code="c">Norman Fenton ; Martin Neil</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boca Raton, Fla. [u.a.]</subfield><subfield code="b">CRC Press</subfield><subfield code="c">2013</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIX, 503 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bayesian statistical decision theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Decision making</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Risk management</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Risikoanalyse</subfield><subfield code="0">(DE-588)4137042-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Bayes-Entscheidungstheorie</subfield><subfield code="0">(DE-588)4144220-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Entscheidungstheorie</subfield><subfield code="0">(DE-588)4138606-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Bayes-Netz</subfield><subfield code="0">(DE-588)4567228-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Bayes-Entscheidungstheorie</subfield><subfield code="0">(DE-588)4144220-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Bayes-Netz</subfield><subfield code="0">(DE-588)4567228-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Entscheidungstheorie</subfield><subfield code="0">(DE-588)4138606-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Risikoanalyse</subfield><subfield code="0">(DE-588)4137042-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Bayes-Entscheidungstheorie</subfield><subfield code="0">(DE-588)4144220-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Neil, Martin</subfield><subfield code="d">19XX-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1029799776</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=025684988&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-025684988</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV040704525 |
illustrated | Illustrated |
indexdate | 2024-07-10T00:32:06Z |
institution | BVB |
isbn | 9781439809105 |
language | English |
lccn | 2012015766 |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-025684988 |
oclc_num | 826288160 |
open_access_boolean | |
owner | DE-91G DE-BY-TUM DE-91 DE-BY-TUM DE-384 DE-M347 |
owner_facet | DE-91G DE-BY-TUM DE-91 DE-BY-TUM DE-384 DE-M347 |
physical | XIX, 503 S. graph. Darst. |
publishDate | 2013 |
publishDateSearch | 2013 |
publishDateSort | 2013 |
publisher | CRC Press |
record_format | marc |
spelling | Fenton, Norman E. 1956- Verfasser (DE-588)172073669 aut Risk assessment and decision analysis with Bayesian networks Norman Fenton ; Martin Neil Boca Raton, Fla. [u.a.] CRC Press 2013 XIX, 503 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Bayesian statistical decision theory Decision making Risk management Risikoanalyse (DE-588)4137042-9 gnd rswk-swf Bayes-Entscheidungstheorie (DE-588)4144220-9 gnd rswk-swf Entscheidungstheorie (DE-588)4138606-1 gnd rswk-swf Bayes-Netz (DE-588)4567228-3 gnd rswk-swf Bayes-Entscheidungstheorie (DE-588)4144220-9 s Bayes-Netz (DE-588)4567228-3 s Entscheidungstheorie (DE-588)4138606-1 s Risikoanalyse (DE-588)4137042-9 s 1\p DE-604 DE-604 Neil, Martin 19XX- Verfasser (DE-588)1029799776 aut HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=025684988&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Fenton, Norman E. 1956- Neil, Martin 19XX- Risk assessment and decision analysis with Bayesian networks Bayesian statistical decision theory Decision making Risk management Risikoanalyse (DE-588)4137042-9 gnd Bayes-Entscheidungstheorie (DE-588)4144220-9 gnd Entscheidungstheorie (DE-588)4138606-1 gnd Bayes-Netz (DE-588)4567228-3 gnd |
subject_GND | (DE-588)4137042-9 (DE-588)4144220-9 (DE-588)4138606-1 (DE-588)4567228-3 |
title | Risk assessment and decision analysis with Bayesian networks |
title_auth | Risk assessment and decision analysis with Bayesian networks |
title_exact_search | Risk assessment and decision analysis with Bayesian networks |
title_full | Risk assessment and decision analysis with Bayesian networks Norman Fenton ; Martin Neil |
title_fullStr | Risk assessment and decision analysis with Bayesian networks Norman Fenton ; Martin Neil |
title_full_unstemmed | Risk assessment and decision analysis with Bayesian networks Norman Fenton ; Martin Neil |
title_short | Risk assessment and decision analysis with Bayesian networks |
title_sort | risk assessment and decision analysis with bayesian networks |
topic | Bayesian statistical decision theory Decision making Risk management Risikoanalyse (DE-588)4137042-9 gnd Bayes-Entscheidungstheorie (DE-588)4144220-9 gnd Entscheidungstheorie (DE-588)4138606-1 gnd Bayes-Netz (DE-588)4567228-3 gnd |
topic_facet | Bayesian statistical decision theory Decision making Risk management Risikoanalyse Bayes-Entscheidungstheorie Entscheidungstheorie Bayes-Netz |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=025684988&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT fentonnormane riskassessmentanddecisionanalysiswithbayesiannetworks AT neilmartin riskassessmentanddecisionanalysiswithbayesiannetworks |