Induced representations of locally compact groups:
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Cambridge [u.a.]
Cambridge Univ. Press
2013
|
Ausgabe: | 1. publ. |
Schriftenreihe: | Cambridge tracts in mathematics
197 |
Schlagworte: | |
Online-Zugang: | Cover image Inhaltsverzeichnis |
Beschreibung: | "Locally compact groups arise in many diverse areas of mathematics, the physical sciences, and engineering and the presence of the group is usually felt through unitary representations of the group. This observation underlies the importance of understanding such representations and how they may be constructed, combined, or decomposed. Of particular importance are the irreducible unitary representations. In the middle of the last century, G.W. Mackey initiated a program to develop a systematic method for identifying all the irreducible unitary representations of a given locally compact group G. We denote the set of all unitary equivalence classes of irreducible unitary representations of G by G. Mackey's methods are only effective when G has certain restrictive structural characteristics; nevertheless, time has shown that many of the groups that arise in important problems are appropriate for Mackey's approach. The program Mackey initiated received contributions from many researchers with some of the most substantial advances made by R.J. Blattner and J.M.G. Fell. Fell'swork is particularly important in studying Gas a topological space. At the core of this program is the inducing construction, which is a method of building a unitary representation of a group from a representation of a subgroup"-- Provided by publisher. Includes bibliographical references and index |
Beschreibung: | XIII, 343 S. |
ISBN: | 9780521762267 |
Internformat
MARC
LEADER | 00000nam a2200000zcb4500 | ||
---|---|---|---|
001 | BV040636021 | ||
003 | DE-604 | ||
005 | 20151126 | ||
007 | t | ||
008 | 121217s2013 xxu |||| 00||| eng d | ||
010 | |a 2012027124 | ||
020 | |a 9780521762267 |c hardback |9 978-0-521-76226-7 | ||
035 | |a (OCoLC)826550651 | ||
035 | |a (DE-599)BVBBV040636021 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
044 | |a xxu |c US | ||
049 | |a DE-384 |a DE-29T |a DE-19 |a DE-83 |a DE-91G | ||
050 | 0 | |a QA387 | |
082 | 0 | |a 512/.25 | |
084 | |a SK 260 |0 (DE-625)143227: |2 rvk | ||
084 | |a MAT 223f |2 stub | ||
100 | 1 | |a Kaniuth, Eberhard |e Verfasser |4 aut | |
245 | 1 | 0 | |a Induced representations of locally compact groups |c Eberhard Kaniuth ; Keith F. Taylor |
250 | |a 1. publ. | ||
264 | 1 | |a Cambridge [u.a.] |b Cambridge Univ. Press |c 2013 | |
300 | |a XIII, 343 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Cambridge tracts in mathematics |v 197 | |
500 | |a "Locally compact groups arise in many diverse areas of mathematics, the physical sciences, and engineering and the presence of the group is usually felt through unitary representations of the group. This observation underlies the importance of understanding such representations and how they may be constructed, combined, or decomposed. Of particular importance are the irreducible unitary representations. In the middle of the last century, G.W. Mackey initiated a program to develop a systematic method for identifying all the irreducible unitary representations of a given locally compact group G. We denote the set of all unitary equivalence classes of irreducible unitary representations of G by G. Mackey's methods are only effective when G has certain restrictive structural characteristics; nevertheless, time has shown that many of the groups that arise in important problems are appropriate for Mackey's approach. The program Mackey initiated received contributions from many researchers with some of the most substantial advances made by R.J. Blattner and J.M.G. Fell. Fell'swork is particularly important in studying Gas a topological space. At the core of this program is the inducing construction, which is a method of building a unitary representation of a group from a representation of a subgroup"-- Provided by publisher. | ||
500 | |a Includes bibliographical references and index | ||
650 | 4 | |a Locally compact groups | |
650 | 4 | |a Topological spaces | |
650 | 4 | |a Representations of groups | |
650 | 7 | |a MATHEMATICS / Mathematical Analysis |2 bisacsh | |
650 | 0 | 7 | |a Topologischer Raum |0 (DE-588)4137586-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Lokal kompakte Gruppe |0 (DE-588)4168094-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Darstellungstheorie |0 (DE-588)4148816-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Lokal kompakte Gruppe |0 (DE-588)4168094-7 |D s |
689 | 0 | 1 | |a Darstellungstheorie |0 (DE-588)4148816-7 |D s |
689 | 0 | 2 | |a Topologischer Raum |0 (DE-588)4137586-5 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Taylor, Keith F. |d 1950- |e Verfasser |0 (DE-588)170912477 |4 aut | |
830 | 0 | |a Cambridge tracts in mathematics |v 197 |w (DE-604)BV000000001 |9 197 | |
856 | 4 | |u http://assets.cambridge.org/97805217/62267/cover/9780521762267.jpg |3 Cover image | |
856 | 4 | 2 | |m LoC Fremddatenuebernahme |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=025463186&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-025463186 |
Datensatz im Suchindex
_version_ | 1804149749012496384 |
---|---|
adam_text | INDUCED REPRESENTATIONS OF LOCALLY COMPACT GROUPS
/ KANIUTH, EBERHARD
: 2013
TABLE OF CONTENTS / INHALTSVERZEICHNIS
1. BASICS; 2. INDUCED REPRESENTATIONS; 3. THE IMPRIMITIVITY THEOREM; 4.
MACKEY ANALYSIS; 5. TOPOLOGIES ON DUAL SPACES; 6. TOPOLOGICAL FROBENIUS
PROPERTIES; 7. FURTHER APPLICATIONS.
DIESES SCHRIFTSTUECK WURDE MASCHINELL ERZEUGT.
|
any_adam_object | 1 |
author | Kaniuth, Eberhard Taylor, Keith F. 1950- |
author_GND | (DE-588)170912477 |
author_facet | Kaniuth, Eberhard Taylor, Keith F. 1950- |
author_role | aut aut |
author_sort | Kaniuth, Eberhard |
author_variant | e k ek k f t kf kft |
building | Verbundindex |
bvnumber | BV040636021 |
callnumber-first | Q - Science |
callnumber-label | QA387 |
callnumber-raw | QA387 |
callnumber-search | QA387 |
callnumber-sort | QA 3387 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 260 |
classification_tum | MAT 223f |
ctrlnum | (OCoLC)826550651 (DE-599)BVBBV040636021 |
dewey-full | 512/.25 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512/.25 |
dewey-search | 512/.25 |
dewey-sort | 3512 225 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
edition | 1. publ. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03546nam a2200553zcb4500</leader><controlfield tag="001">BV040636021</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20151126 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">121217s2013 xxu |||| 00||| eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">2012027124</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780521762267</subfield><subfield code="c">hardback</subfield><subfield code="9">978-0-521-76226-7</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)826550651</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV040636021</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-91G</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA387</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512/.25</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 260</subfield><subfield code="0">(DE-625)143227:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 223f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kaniuth, Eberhard</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Induced representations of locally compact groups</subfield><subfield code="c">Eberhard Kaniuth ; Keith F. Taylor</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1. publ.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge [u.a.]</subfield><subfield code="b">Cambridge Univ. Press</subfield><subfield code="c">2013</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIII, 343 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Cambridge tracts in mathematics</subfield><subfield code="v">197</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">"Locally compact groups arise in many diverse areas of mathematics, the physical sciences, and engineering and the presence of the group is usually felt through unitary representations of the group. This observation underlies the importance of understanding such representations and how they may be constructed, combined, or decomposed. Of particular importance are the irreducible unitary representations. In the middle of the last century, G.W. Mackey initiated a program to develop a systematic method for identifying all the irreducible unitary representations of a given locally compact group G. We denote the set of all unitary equivalence classes of irreducible unitary representations of G by G. Mackey's methods are only effective when G has certain restrictive structural characteristics; nevertheless, time has shown that many of the groups that arise in important problems are appropriate for Mackey's approach. The program Mackey initiated received contributions from many researchers with some of the most substantial advances made by R.J. Blattner and J.M.G. Fell. Fell'swork is particularly important in studying Gas a topological space. At the core of this program is the inducing construction, which is a method of building a unitary representation of a group from a representation of a subgroup"-- Provided by publisher.</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Locally compact groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topological spaces</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Representations of groups</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Mathematical Analysis</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Topologischer Raum</subfield><subfield code="0">(DE-588)4137586-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lokal kompakte Gruppe</subfield><subfield code="0">(DE-588)4168094-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Darstellungstheorie</subfield><subfield code="0">(DE-588)4148816-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Lokal kompakte Gruppe</subfield><subfield code="0">(DE-588)4168094-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Darstellungstheorie</subfield><subfield code="0">(DE-588)4148816-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Topologischer Raum</subfield><subfield code="0">(DE-588)4137586-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Taylor, Keith F.</subfield><subfield code="d">1950-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)170912477</subfield><subfield code="4">aut</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Cambridge tracts in mathematics</subfield><subfield code="v">197</subfield><subfield code="w">(DE-604)BV000000001</subfield><subfield code="9">197</subfield></datafield><datafield tag="856" ind1="4" ind2=" "><subfield code="u">http://assets.cambridge.org/97805217/62267/cover/9780521762267.jpg</subfield><subfield code="3">Cover image</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">LoC Fremddatenuebernahme</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=025463186&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-025463186</subfield></datafield></record></collection> |
id | DE-604.BV040636021 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T00:27:58Z |
institution | BVB |
isbn | 9780521762267 |
language | English |
lccn | 2012027124 |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-025463186 |
oclc_num | 826550651 |
open_access_boolean | |
owner | DE-384 DE-29T DE-19 DE-BY-UBM DE-83 DE-91G DE-BY-TUM |
owner_facet | DE-384 DE-29T DE-19 DE-BY-UBM DE-83 DE-91G DE-BY-TUM |
physical | XIII, 343 S. |
publishDate | 2013 |
publishDateSearch | 2013 |
publishDateSort | 2013 |
publisher | Cambridge Univ. Press |
record_format | marc |
series | Cambridge tracts in mathematics |
series2 | Cambridge tracts in mathematics |
spelling | Kaniuth, Eberhard Verfasser aut Induced representations of locally compact groups Eberhard Kaniuth ; Keith F. Taylor 1. publ. Cambridge [u.a.] Cambridge Univ. Press 2013 XIII, 343 S. txt rdacontent n rdamedia nc rdacarrier Cambridge tracts in mathematics 197 "Locally compact groups arise in many diverse areas of mathematics, the physical sciences, and engineering and the presence of the group is usually felt through unitary representations of the group. This observation underlies the importance of understanding such representations and how they may be constructed, combined, or decomposed. Of particular importance are the irreducible unitary representations. In the middle of the last century, G.W. Mackey initiated a program to develop a systematic method for identifying all the irreducible unitary representations of a given locally compact group G. We denote the set of all unitary equivalence classes of irreducible unitary representations of G by G. Mackey's methods are only effective when G has certain restrictive structural characteristics; nevertheless, time has shown that many of the groups that arise in important problems are appropriate for Mackey's approach. The program Mackey initiated received contributions from many researchers with some of the most substantial advances made by R.J. Blattner and J.M.G. Fell. Fell'swork is particularly important in studying Gas a topological space. At the core of this program is the inducing construction, which is a method of building a unitary representation of a group from a representation of a subgroup"-- Provided by publisher. Includes bibliographical references and index Locally compact groups Topological spaces Representations of groups MATHEMATICS / Mathematical Analysis bisacsh Topologischer Raum (DE-588)4137586-5 gnd rswk-swf Lokal kompakte Gruppe (DE-588)4168094-7 gnd rswk-swf Darstellungstheorie (DE-588)4148816-7 gnd rswk-swf Lokal kompakte Gruppe (DE-588)4168094-7 s Darstellungstheorie (DE-588)4148816-7 s Topologischer Raum (DE-588)4137586-5 s DE-604 Taylor, Keith F. 1950- Verfasser (DE-588)170912477 aut Cambridge tracts in mathematics 197 (DE-604)BV000000001 197 http://assets.cambridge.org/97805217/62267/cover/9780521762267.jpg Cover image LoC Fremddatenuebernahme application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=025463186&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Kaniuth, Eberhard Taylor, Keith F. 1950- Induced representations of locally compact groups Cambridge tracts in mathematics Locally compact groups Topological spaces Representations of groups MATHEMATICS / Mathematical Analysis bisacsh Topologischer Raum (DE-588)4137586-5 gnd Lokal kompakte Gruppe (DE-588)4168094-7 gnd Darstellungstheorie (DE-588)4148816-7 gnd |
subject_GND | (DE-588)4137586-5 (DE-588)4168094-7 (DE-588)4148816-7 |
title | Induced representations of locally compact groups |
title_auth | Induced representations of locally compact groups |
title_exact_search | Induced representations of locally compact groups |
title_full | Induced representations of locally compact groups Eberhard Kaniuth ; Keith F. Taylor |
title_fullStr | Induced representations of locally compact groups Eberhard Kaniuth ; Keith F. Taylor |
title_full_unstemmed | Induced representations of locally compact groups Eberhard Kaniuth ; Keith F. Taylor |
title_short | Induced representations of locally compact groups |
title_sort | induced representations of locally compact groups |
topic | Locally compact groups Topological spaces Representations of groups MATHEMATICS / Mathematical Analysis bisacsh Topologischer Raum (DE-588)4137586-5 gnd Lokal kompakte Gruppe (DE-588)4168094-7 gnd Darstellungstheorie (DE-588)4148816-7 gnd |
topic_facet | Locally compact groups Topological spaces Representations of groups MATHEMATICS / Mathematical Analysis Topologischer Raum Lokal kompakte Gruppe Darstellungstheorie |
url | http://assets.cambridge.org/97805217/62267/cover/9780521762267.jpg http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=025463186&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV000000001 |
work_keys_str_mv | AT kaniutheberhard inducedrepresentationsoflocallycompactgroups AT taylorkeithf inducedrepresentationsoflocallycompactgroups |