Ion beam therapy: fundamentals, technology, clinical applications
Gespeichert in:
Weitere Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Berlin ; Heidelberg [u.a.]
Springer
2012
|
Ausgabe: | 1. ed. |
Schriftenreihe: | Biological and medical physics, biomedical engineering
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | Hier auch später erschienene, unveränderte Nachdrucke |
Beschreibung: | XXXV, 729 Seiten Ill., graph. Darst. 235 mm x 155 mm |
ISBN: | 9783642214134 3642214134 9783662520864 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV040623140 | ||
003 | DE-604 | ||
005 | 20180612 | ||
007 | t | ||
008 | 121210s2012 ad|| |||| 00||| eng d | ||
015 | |a 11,N18 |2 dnb | ||
020 | |a 9783642214134 |c Gb. : ca. EUR 149.75 (DE) (freier Pr.), ca. sfr 201.00 (freier Pr.) |9 978-3-642-21413-4 | ||
020 | |a 3642214134 |c Gb. : ca. EUR 149.75 (DE) (freier Pr.), ca. sfr 201.00 (freier Pr.) |9 3-642-21413-4 | ||
020 | |a 9783662520864 |9 978-3-662-52086-4 | ||
024 | 3 | |a 9783642214134 | |
035 | |a (OCoLC)838690477 | ||
035 | |a (DE-599)BVBBV040623140 | ||
040 | |a DE-604 |b ger | ||
041 | 0 | |a eng | |
049 | |a DE-19 | ||
082 | 0 | |a 615.842 |2 22/ger | |
084 | |a UM 5000 |0 (DE-625)145902: |2 rvk | ||
245 | 1 | 0 | |a Ion beam therapy |b fundamentals, technology, clinical applications |c Ute Linz ed. |
250 | |a 1. ed. | ||
264 | 1 | |a Berlin ; Heidelberg [u.a.] |b Springer |c 2012 | |
300 | |a XXXV, 729 Seiten |b Ill., graph. Darst. |c 235 mm x 155 mm | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Biological and medical physics, biomedical engineering | |
500 | |a Hier auch später erschienene, unveränderte Nachdrucke | ||
650 | 0 | 7 | |a Strahlentherapie |0 (DE-588)4057833-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Ionenstrahl |0 (DE-588)4162347-2 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Strahlentherapie |0 (DE-588)4057833-1 |D s |
689 | 0 | 1 | |a Ionenstrahl |0 (DE-588)4162347-2 |D s |
689 | 0 | |5 DDB | |
700 | 1 | |a Linz, Ute |d 1953- |0 (DE-588)110284569 |4 edt | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |t Ion Beam Therapy |u 978-3-642-21414-1 |
856 | 4 | 2 | |m DNB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=025450564&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-025450564 |
Datensatz im Suchindex
_version_ | 1804149730587967488 |
---|---|
adam_text | IMAGE 1
CONTENTS
PART I ION BEAM THERAPY IN PERSPECTIVE 1 FROM X-RAYS TO ION BEAMS: A
SHORT HISTORY OF RADIATION THERAPY 3
JAMES M. SLATER 1.1 INTRODUCTION 3
1.1.1 THE DISCOVERY ERA 4
1.1.2 THE ORTHOVOLTAGE ERA 6
1.1.3 MEGAVOLTAGE ERA 6
1.1.4 THE ERA OF ION BEAMS 8
1.2 PERSPECTIVE 12
REFERENCES 14
2 THE PLACE OF ION BEAMS IN CLINICAL APPLICATIONS 17
PAUL J. KIM AND HELEN A. SHIH 2.1 THE ROLE OF PROTON THERAPY 17
2.1.1 ABLATIVE INTENT WITH SINGLE AND HYPOFRACTIONATED THERAPY 17
2.1.2 ORGAN PRESERVATION 19
2.1.3 DOSE ESCALATION AROUND CRITICAL STRUCTURES WITH HIGHLY
FRACTIONATED TREATMENT 20
2.1.4 REDUCTION IN MORBIDITY AND SECONDARY MALIGNANCIES 23
2.1.5 INVESTIGATIONAL 23
2.2 CARBON ION RADIOTHERAPY 26
2.3 CONCLUSION 26
REFERENCES 27
3 SOCIO-ECONOMIC ASPECTS OF ION BEAM THERAPY 31
ANDRE KONSKI 3.1 INTRODUCTION 31
3.2 FACILITY DEVELOPMENT COST 33
VII
BIBLIOGRAFISCHE INFORMATIONEN HTTP://D-NB.INFO/101127342X
DIGITALISIERT DURCH
IMAGE 2
VIII CONTENTS
3.3 COST-EFFECTIVENESS OF IBT 35
3.4 CLINICAL TRIALS PRIOR TO ADOPTING IBT 39
REFERENCES 40
PART II PHYSICAL AND BIOLOGICAL ASPECTS
4 PHYSICAL AND BIOLOGICAL RATIONALE FOR USING IONS IN THERAPY 45 UTE
LINZ 4.1 INTRODUCTION 45
4.2 PHYSICAL PROPERTIES 46
4.2.1 INTERACTION OF PHOTONS AND IONS WITH MATTER 46
4.2.2 MAGNETIC DEFLECTION FOR ACTIVE BEAM SHAPING 48 4.3 BIOPHYSICAL
PROPERTIES 50
4.3.1 STOPPING POWER AND LET 50
4.4 BIOLOGICAL PROPERTIES 52
4.4.1 RELATIVE BIOLOGICAL EFFECTIVENESS 52
4.4.2 OXYGEN ENHANCEMENT RATIO 53
4.4.3 VARIATION IN RADIOSENSITIVITY WITH THE CELL CYCLE 54 4.4.4
SUBLETHAL CELL DAMAGE 55
4.5 COMPARISON OF PROTONS AND HEAVIER IONS 55
REFERENCES 57
5 EARLY AND LATE RESPONSES TO ION IRRADIATION 61
REINHARD SCHULTE AND TED LING 5.1 BASIC CONCEPTS 61
5.1.1 DEFINITION OF EARLY AND LATE TISSUE RESPONSES 61 5.1.2 CELLULAR
AND MOLECULAR ORIGIN OF RADIATION RESPONSE 62
5.1.3 DOSE-VOLUME EFFECTS 63
5.1.4 BIOLOGICAL DOSE WEIGHTING 65
5.2 EARLY AND LATE TISSUE RESPONSES TO PROTON AND ION IRRADIATION 67
5.2.1 EARLY NORMAL TISSUE RESPONSES 68
5.2.2 LATE NORMAL TISSUE RESPONSES 71
REFERENCES 76
6 THE IMPACT OF RADIATION QUALITY ON CURE RATE 81
JOHN GUEULETTE, REINHARD GAHBAUER, DAN JONES, JACOBUS SLABBERT, AND
ANDRE WAMBERSIE 6.1 PHYSICAL SELECTIVITY AND RADIATION QUALITY 81
6.2 FROM ABSORBED DOSE TO RADIOBIOLOGICAL EFFECTS 83
6.3 RBE FOR THE DIFFERENT RADIATION QUALITIES USED IN THERAPY 85
6.4 CRITERIA FOR PATIENT SELECTION FOR HIGH-LET RADIATION THERAPY 88
IMAGE 3
CONTENTS IX
6.5 QUALITY ASSURANCE 89
6.6 CONCLUSIONS 92
REFERENCES 92
PART HI MODELS AND PRECLINICAL STUDIES
7 MONTE CARLO METHODS FOR DOSE CALCULATIONS 97
KATIA PARODI 7.1 INTRODUCTION 97
7.2 MC CODES FOR IBT 98
7.3 THE ROADMAP FOR MC DOSE CALCULATIONS IN IBT 101
7.3.1 MODELING OF THE BEAM DELIVERY SYSTEM 101
7.3.2 DOSE CALCULATIONS IN PHANTOMS 104
7.3.3 DOSE CALCULATIONS IN THE PATIENT CT 106
7.4 BIOLOGICAL DOSE CALCULATIONS 110
7.5 CONCLUSION 112
REFERENCES 113
8 MODELING HEAVY ION RADIATION EFFECTS 117
THILO ELSAESSER 8.1 INTRODUCTION 117
8.2 AMORPHOUS TRACK MODELS 118
8.3 EARLY APPROACHES BY KATZ AND COWORKERS 119
8.4 MICRODOSIMETRIC KINETIC MODEL 120
8.5 LOCAL EFFECT MODEL 122
8.5.1 ORIGINAL LOCAL EFFECT MODEL 122
8.5.2 LEMII 124
8.5.3 LEMIII 125
8.5.4 GENERALIZATION OF LEM(LEM IV) 125
8.5.5 COMPARISON TO EXPERIMENTAL IN VITRO CELL SURVIVAL DATA 126
8.6 APPLYING THE MODELS TO COMPLEX RADIATION FIELDS 127
8.7 COMPARISON OF LEM, MKM, AND KATZ APPROACH 129
8.8 APPLICATION IN TREATMENT PLANNING FOR HEAVY IONS 129
8.9 CONCLUSIONS AND FUTURE DIRECTIONS 131
REFERENCES 132
9 PRECLINICAL RADIOBIOLOGY AND PREDICTIVE ASSAYS 135
ELEANOR A. BLAKELY AND POLLY Y. CHANG 9.1 INTRODUCTION 135
9.2 MEASUREMENTS OF THE RELATIVE BIOLOGICAL EFFECTIVENESS 136 9.3
SPATIAL MAPPING OF RBE 137
9.4 RBE-LET RELATION FOR NORMAL AND MALIGNANT TISSUES 138
IMAGE 4
X CONTENTS
9.5 ADDITIONAL VARIABLES IN MEASURING RBE 139
9.5.1 DIFFERENT DOSES AND DOSE FRACTIONATION REGIMES 139 9.5.2
DIFFERENCES IN BIOLOGICAL GEOMETRY RELATIVE TO THE BEAM EXPOSURE 140
9.5.3 DIFFERENCES IN CELL CYCLE STATUS 140
9.5.4 DIFFERENCES IN INDIVIDUAL RADIOSENSITIVITY 141
9.5.5 DIFFERENCES BETWEEN SPECIES 141
9.5.6 DIFFERENCES IN THE GENDER OF THE ORGANISM 141
9.6 CONCLUSIONS 142
REFERENCES 143
PART TV CLINICAL RESULTS AND INDICATIONS
10 OCULAR PROTON THERAPY CENTERS 149
ANDRZEJ KACPEREK 10.1 INTRODUCTION 149
10.2 PRINCIPAL CONSTITUENTS OF A PT FACILITY 152
10.2.1 PROTON ACCELERATORS 152
10.2.2 PROTON BEAM CHARACTERISTICS 154
10.2.3 BEAM-MODIFYING DEVICES 154
10.2.4 PATIENT TREATMENT CHAIR AND MASK 159
10.2.5 PATIENT POSITIONING, X-RAY VERIFICATION SYSTEMS AND MARKERS 162
10.3 RADIATION PROTECTION 164
10.4 TREATMENT DOSES, FRACTIONATION, AND RBE 165
10.5 OCULAR PT-PLANNING SYSTEMS 167
10.6 QUALITY-ASSURANCE METHODOLOGY 170
10.6.1 IN-BEAM DOSE MONITORING 170
10.6.2 DAILY BEAM AND DOSIMETRY CHECKS FOR TREATMENT 170
10.6.3 PRETREATMENT CHECKS 171
10.6.4 REFERENCE AND ABSOLUTE DOSIMETRY PROCEDURES 171 10.6.5
CHARACTERIZATION OF THE TREATMENT BEAM 171
10.6.6 IN VIVO DOSIMETRY 172
10.7 DISCUSSION 172
10.8 CONCLUSION 174
REFERENCES 175
11 CLINICAL INDICATIONS FOR CARBON ION RADIOTHERAPY AND RADIATION
THERAPY WITH OTHER HEAVIER IONS 179
STEPHANIE E. COMBS 11.1 INTRODUCTION 179
11.2 SKULL BASE TUMORS 180
11.3 BRAIN TUMORS 180
11.4 HEPATOCELLULAR CARCINOMA 182
IMAGE 5
CONTENTS XI
11.5 PROSTATE CANCER 184
11.6 RECURRENT RECTAL CANCER 184
11.7 LUNG CANCER 185
11.8 HEAD AND NECK TUMORS 186
11.9 SOFT-TISSUE AND BONE SARCOMAS 186
11.10 GYNECOLOGICAL MALIGNANCIES 187
11.11 CONCLUSION 187
REFERENCES 1 88
12 SKULL BASE TUMORS 193
DANIELA SCHULZ-ERTNER 12.1 INTRODUCTION 193
12.2 CHORDOMAS AND CHONDROSARCOMAS 194
12.2.1 CHORDOMAS 195
12.2.2 CHONDROSARCOMA 196
12.3 MALIGNANT SALIVARY GLAND TUMORS 197
12.4 MENINGIOMA 198
12.5 NEURINOMA AND PITUITARY ADENOMA 200
12.5.1 NEURINOMA 201
12.5.2 PITUITARY ADENOMA 202
REFERENCES 203
13 PROTON THERAPY FOR THORACOABDOMINAL TUMORS 207
HIDEYUKI SAKURAI, TOSHIYUKI OKUMURA, SHINJI SUGAHARA, HIDETSUGU
NAKAYAMA, AND KOICHI TOKUUYE 13.1 INTRODUCTION 207
13.2 LUNG 208
13.2.1 STAGELNSCLC 208
13.2.2 STAGE II-IIINSCLC 211
13.3 ESOPHAGUS 211
13.3.1 SURVIVAL, LOCAL CONTROL, AND SEQUELAE FOR ESOPHAGEAL CANCER 212
13.3.2 TREATMENT PROCEDURES FOR ESOPHAGEAL CANCER PRACTICED AT THE PMRC
212
13.4 LIVER 214
13.4.1 GENERAL MANAGEMENT OF HCC 215
13.4.2 PT PROCEDURE FOR HCC 215
13.4.3 CLINICAL OUTCOME OFPT FOR HCC 216
REFERENCES 219
14 CARBON ION RADIOTHERAPY FOR PERIPHERAL STAGE I NON-SMALL CELL LUNG
CANCER 223
TADASHI KAMADA, NAOYOSHI YAMAMOTO, AND MASAYUKI BABA 14.1 INTRODUCTION
223
14.2 CIRT FOR LUNG CANCER AT NIRS 224
IMAGE 6
XII CONTENTS
14.3 TREATMENT METHODOLOGY 225
14.3.1 STAGING 225
14.3.2 MARKER INSERTION 225
14.3.3 IMMOBILIZATION 226
14.3.4 RESPIRATORY GATING 227
14.3.5 TREATMENT PLANNING 227
14.3.6 IRRADIATION 228
14.4 CLINICAL RESULTS 229
14.4.1 PHASE II CLINICAL TRIAL WITH 9 OR 4 FRACTIONS 229
14.4.2 PHASE I/II CLINICAL TRIAL: SINGLE FRACTIONATION 230 14.5
COMPARISONS OF CIRT AND OTHER MODALITIES 231
14.6 CONCLUSION 234
REFERENCES 234
15 ION BEAM THERAPY FOR GYNECOLOGICAL TUMORS 237
TATSUYA OHNO AND SHINGO KATO 15.1 INTRODUCTION 237
15.2 PROTON THERAPY FOR GYNECOLOGICAL TUMORS 238
15.2.1 THE TSUKUBA UNIVERSITY EXPERIENCE 238
15.3 CARBON ION RADIOTHERAPY FOR GYNECOLOGICAL TUMORS 239 15.3.1 THE
NIRS EXPERIENCE 239
15.3.2 LOCALLY ADVANCED CERVICAL CARCINOMA 241
15.3.3 LOCALLY ADVANCED CERVICAL SQUAMOUS CELL CARCINOMA 242
15.3.4 LOCALLY ADVANCED UTERINE ADENOCARCINOMA 244 15.4 INTER- AND
INTRAFRACTIONAL TUMOR AND ORGAN MOTION 247
15.5 OUTLOOK 248
REFERENCES 250
16 IS PROSTATE CANCER A GOOD CANDIDATE FOR ION BEAM THERAPY? 253 CARL J.
ROSSI JR. 16.1 INTRODUCTION 253
16.1.1 PROTON THERAPY RESULTS 254
16.1.2 CIRT RESULTS 269
16.2 CONCLUSION 271
REFERENCES 274
17 RATIONALE FOR PROTON THERAPY IN PEDIATRIE MALIGNANCIES 277 SHIAO Y.
WOO 17.1 INTRODUCTION 277
17.2 PEDIATRIE SOLID TUMORS 278
17.3 LATETOXICITIESOFRT 278
17.4 METHODS TO POTENTIALLY REDUCE LATE EFFECTS OF RT 278
17.5 RATIONALE FOR PT IN THE TREATMENT OF PEDIATRIE MALIGNANCIES ....
279 17.6 CLINICAL RESULTS 281
17.7 CHALLENGES OF PT 283
REFERENCES 285
IMAGE 7
CONTENTS XIII
18 TOLERANCE OF NORMAL TISSUES TO ION BEAM THERAPY 287
JEAN-LOUIS HABRAND, JEAN DATCHARY, PASCAL POMMIER, STEPHANIE BOLLE, LOIC
FEUVRET, ISMAEL GHORBEL, AND REMI DENDALE 18.1 INTRODUCTION 287
18.2 OCULAR TUMORS 289
18.2.1 PROTONS 289
18.2.2 LIGHTIONS 291
18.3 TUMORS OF THE HEAD AND NECK 291
18.3.1 BRAIN 291
18.3.2 CRANIAL NERVES AND COCHLEA 294
18.3.3 PITUITARY-HYPOTHALAMIC AXIS 295
18.4 TUMORS OF THE TRUNK 296
18.4.1 GENITOURINARY AND LOWER DIGESTIVE TRACT 296
18.4.2 UPPER DIGESTIVE TRACT 298
18.4.3 LUNGS 299
18.4.4 SKIN 300
18.5 PEDIATRIE TUMORS 300
18.6 SECOND CANCERS 302
18.6.1 PROTONS 302
18.6.2 LIGHTIONS 302
18.7 CONCLUSION 303
REFERENCES 303
19 DESIGN AND IMPLEMENTATION OF CLINICAL TRIALS OF ION BEAM THERAPY 311
JAMES D. COX 19.1 INTRODUCTION 311
19.2 DIFFERENT TYPES OF CLINICAL TRIALS 312
19.3 LEVELS OF EVIDENCE 313
19.4 CLINICAL PT TRIALS 314
19.5 CLINICAL TRIALS WITH PROTONS AND CARBON IONS 315
19.6 DESIGN STRATEGIES FOR CLINICAL TRIALS 316
19.7 EQUIPOISE AND THE ETHICS OF CLINICAL INVESTIGATIONS OF ION BEAMS
317
19.8 MECHANISMS FOR CLINICAL INVESTIGATIONS OF IBT 318
19.9 SUMMARY 319
REFERENCES 319
PART V MEDICAL ACCELERATORS AND BEAM LINE DESIGN
20 DESIGN CRITERIA FOR MEDICAL ACCELERATORS 325
HARTMUT EICKHOFF, UDO WEINRICH, AND JOSE ALONSO 20.1 INTRODUCTION 325
20.2 CLINICAL SPECIFICATIONS 326
IMAGE 8
XIV CONTENTS
20.3 TECHNICAL DESIGN CRITERIA FOR MEDICAL ACCELERATORS 328
20.3.1 ACCELERATOR AND BEAM DELIVERY SYSTEM 328
20.3.2 BEAM ENERGY 329
20.3.3 BEAM ENERGY VARIATION 329
20.3.4 LATERAL BEAM QUALITY 330
20.3.5 BEAM INTENSITY AND TIME STRUCTURE 331
20.3.6 BEAM CONTROL AND SAFETY ASPECTS 332
20.3.7 CONTROL SYSTEM 333
20.4 COST CONSIDERATIONS AND AVAILABILITY 334
20.5 DESIGN CRITERIA AND LAYOUT OF SYNCHROTRON-BASED SYSTEMS 334
20.5.1 BASIC SYNCHROTRON PARAMETERS 335
20.5.2 THE SYNCHROTRON INJECTOR SYSTEM 336
20.5.3 BEAM EXTRACTION FROM THE SYNCHROTRON 337
20.5.4 THE HIGH-ENERGY BEAM TRANSPORT LINE WITH GANTRIES 338
20.6 NEW ACCELERATOR CONCEPTS 339
20.6.1 FFAG 339
20.6.2 LINAC BOOSTERS 340
20.6.3 INDUCTION LINACS 341
20.6.4 LASERS 341
20.6.5 ANTIPROTONS 342
20.7 SUMMARY 342
REFERENCES 342
21 SHIELDING AND RADIATION PROTECTION IN ION BEAM THERAPY FACILITIES 345
ANDREW J. WROE AND STEVEN RIGHTNAR 21.1 INTRODUCTION 345
21.2 DOSE LIMITS 346
21.3 RADIATION SHIELDING BASICS 347
21.4 SHIELDING MATERIALS 348
21.5 MAZE AND DOOR CONSTRUCTION 350
21.6 ACTIVATION 352
21.7 DOSE CONSIDERATIONS FOR ELECTRONICS 354
21.8 OUT-OF-FIELD DOSE EQUIVALENTS 355
REFERENCES 358
22 COMMERCIAL ION BEAM THERAPY SYSTEMS 361
YVES JONGEN 22.1 THE HISTORY OF COMMERCIAL ION BEAM THERAPY SYSTEMS 361
22.2 SYSTEMS AND COMPONENTS OF IBT FACILITIES 364
22.3 COMMERCIAL PT SYSTEMS 365
22.3.1 IBA 365
22.3.2 SUMITOMO 367
22.3.3 HITACHI 368
IMAGE 9
CONTENTS XV
22.3.4 MITSUBISHI 369
22.3.5 VARIAN 369
22.3.6 STILL RIVER SYSTEMS 370
22.3.7 OPTIVUS 371
22.4 COMMERCIAL SYSTEMS FOR IONS HEAVIER THAN PROTONS 371 22.4.1
SUMITOMO 371
22.4.2 MITSUBISHI 372
22.4.3 SIEMENS 372
22.4.4 IBA 373
22.5 OUTLOOK 374
23 ADVANTAGES AND CHALLENGES OF SUPERCONDUCTING ACCELERATORS 377 DETLEF
KRISCHEL 23.1 INTRODUCTION 377
23.2 MATERIAL PROPERTIES OF SUPERCONDUCTORS IN COMPARISON TO
NORMAL-CONDUCTING MATERIALS 380 23.3 DEFINITION OF A SUPERCONDUCTING
ACCELERATOR FOR IBT 382
23.4 SPECIFICATIONS OF A POSSIBLE SC ACCELERATOR FOR IBT 382 23.5 THE
ACCEL/VARIAN ISOCHRONOUS CYCLOTRON FOR PT 383 23.5.1 OVERVIEW 383
23.5.2 CYCLOTRON DESIGN PARAMETERS AND PERFORMANCE DATA 385
23.5.3 OPERATIONAL ROUTINES AND MAINTENANCE ASPECTS 388 23.6 ASSESSING
THE POTENTIAL ADVANTAGES OF AN SC CYCLOTRON 390 23.6.1 LOW POWER
CONSUMPTION 390
23.6.2 FAST MORNING START-UP TIME 390
23.6.3 COMPACTNESS 391
23.6.4 AMPLE ROOM FOR PARTICLE ACCELERATION 391
23.7 OTHER SC MEDICAL ACCELERATORS FOR PROTONS 391
23.8 SC MEDICAL ACCELERATORS FOR IONS HEAVIER THAN PROTONS 392
23.8.1 EULIMA 393
23.8.2 SCENT300 393
23.8.3 C400IBA 394
23.9 SC BEAM LINE MAGNETS AND SC GANTRY MAGNETS 394
23.10 CONCLUSIONS 395
REFERENCES 395
PART VI BEAM PREPARATION AND CONTROL
24 ALL-IN-ONE: AN ATTEMPT TO INTEGRATE THE FULL POTENTIAL OF PROTON
PENCIL BEAM SCANNING IN A NEW GANTRY SYSTEM 399 EROS PEDRONI 24.1
INTRODUCTION 399
24.2 THE FIRST SCANNING GANTRY AT PSI 400
IMAGE 10
XVI CONTENTS
24.3 THE RATIONALE OF USING A PROTON GANTRY 401
24.4 THE MOTIVATION FOR A GANTRY WITH PENCIL BEAM SCANNING 402 24.5 THE
OPEN PROBLEM OF SCANNING: SENSITIVITY TO ORGAN MOTION ... 404 24.6
MECHANICAL LAYOUT OF THE NEW GANTRY 2 405
24.7 GANTRY BEAM OPTICS 409
24.8 NOZZLE DESIGN 410
24.9 DEVELOPMENT OF NOVEL SCANNING TECHNIQUES 412
24.10 CONCLUSIONS 414
REFERENCES 414
25 BEAM SPREADING DEVICES 417
JAY FLANZ 25.1 INTRODUCTION 417
25.2 ION BEAMS INTERACTING WITH MATTER 418
25.2.1 SCATTERING 418
25.2.2 ENERGY LOSS 420
25.2.3 RELATIVE EFFECTS 420
25.3 LONGITUDINAL BEAM CONFORMANCE 420
25.3.1 LONGITUDINAL BEAM SPREADING 420
25.4 TRANSVERSE BEAM SPREADING 427
25.4.1 SINGLE SCATTERING 427
25.4.2 DOUBLE SCATTERING 428
25.5 THREE DIMENSIONAL DOSE CONFORMATION 429
25.5.1 ADDITIONAL HARDWARE AND RELATED BEAM PROPERTIES.... 430 25.5.2
SCANNING 434
25.6 SUMMARY 438
REFERENCES 439
26 DOSIMETRY TECHNIQUES FOR ION BEAMS 441
GIACOMO CUTTONE 26.1 INTRODUCTION 441
26.2 PROPERTIES AND REQUIREMENTS OF ION BEAMS 442
26.3 ABSOLUTE DOSIMETRY 444
26.4 DETECTOR REQUIREMENTS FOR RELATIVE DOSIMETRY 448
26.5 CURRENT DETECTOR TYPES FOR IBT 450
26.6 SUMMARY 453
REFERENCES 454
27 CONTROL AND SAFETY SYSTEMS FOR ION BEAM THERAPY 457
HIROSHI AKIYAMA AND KAZUO TOMIDA 27.1 OVERVIEW 457
27.2 CONTROL SYSTEM DESIGN 458
27.2.1 CHARACTERISTICS OF AN IBT SYSTEM 458
27.2.2 USER AND MODE DEFINITIONS 458
27.2.3 REQUIREMENT DEFINITION 459
27.2.4 STRUCTURE OF THE CONTROL SYSTEM 459
IMAGE 11
CONTENTS XVII
27.3 DESIGN OF THE SAFETY SYSTEM 461
27.3.1 SAFETY PHILOSOPHY 461
27.3.2 ROLE OF THE SAFETY SYSTEM 462
27.3.3 FUNCTION OF THE SAFETY SYSTEM 462
27.3.4 CONFIGURATION OF THE SAFETY SYSTEM 463
27.3.5 RISK MANAGEMENT AND SAFETY MEASURES 464
27.3.6 TYPICAL HAZARDOUS SITUATIONS AND SAFETY MEASURES.... 465 27.3.7
OTHER SAFETY CONSIDERATIONS 467
27.4 INTERFACE TO OTHER SYSTEMS 467
27.5 PRODUCT LIFE CYCLE 468
27.6 CONCLUSIONS 469
REFERENCES 469
28 CONSIDERATIONS FOR AN EFFECTIVE QUALITY ASSURANCE PROGRAM FOR PROTON
THERAPY 47 1
MICHAEL GILLIN, X. RONALD ZHU, AND NARAYAN SAHOO 28.1 INTRODUCTION 471
28.2 QUALITY ASSURANCE ON CT SIMULATORS FOR PROTONS 472
28.3 QUALITY ASSURANCE ON PT PLANNING SYSTEMS 473
28.4 QUALITY ASSURANCE ON THE ELECTRONIC MEDICAL RECORD FOR PROTONS 474
28.5 QUALITY ASSURANCE ON THE PT DELIVERY SYSTEM 475
28.6 DAILY MACHINE QA TESTS 475
28.7 WEEKLY MACHINE QA TESTS 478
28.8 MONTHLY MACHINE QA TESTS 478
28.9 ANNUAL MACHINE QA TESTS 479
28.10 PATIENT-SPECIFIC QA 480
28.11 SUMMARY 482
REFERENCES 484
PART VH PATIENT POSITIONING AND TREATMENT PLANNING
29 IMAGING AND TUMOR LOCALIZATION FOR ION BEAM THERAPY 489 OLIVER JAEKEL
29.1 INTRODUCTION 489
29.2 SEGMENTATION 490
29.3 DOSE CALCULATION 492
29.3.1 POSITION VERIFICATION 492
29.4 MONITORING OF INTERFRACTIONAL MOTION 494
29.5 MONITORING OF INTRAFRACTIONAL MOTION 495
29.6 TREATMENT VERIFICATION 498
29.7 FUTURE DEVELOPMENTS 498
29.7.1 MORPHOLOGY: INCREASING IMAGING RESOLUTION 499 29.7.2 MOVEMENT:
INTEGRATION OF IMAGING AND TREATMENT 499
29.7.3 MOLECULAR PROFILING 500
REFERENCES 501
IMAGE 12
XVIII CONTENTS
30 TREATMENT PLANNING FOR ION BEAM THERAPY 503
OLIVER JAEKEL 30.1 INTRODUCTION 503
30.2 ASPECTS OF PATIENT POSITIONING AND IMMOBILIZATION 504
30.3 ASPECTS OF IMAGING AND SEGMENTATION 505
30.4 DEFINITION OF TREATMENT PARAMETERS 506
30.4.1 SELECTION OF BEAM DIRECTIONS 506
30.4.2 DEFINITION OF THE PLANNING TARGET VOLUME 510
30.4.3 SELECTING A PARTICLE TYPE 511
30.5 DOSE-CALCULATION ALGORITHMS 512
30.5.1 ABSORBED-DOSE CALCULATION 512
30.5.2 NUCLEAR FRAGMENTATION 514
30.5.3 BIOLOGICAL MODELING 515
30.6 OPTIMIZATION ALGORITHMS 518
30.6.1 SINGLE-FIELD UNIFORM DOSE 518
30.6.2 INTENSITY-MODULATED IBT 519
30.7 PLAN REVIEW AND ASSESSMENT OF DOSE DISTRIBUTIONS 520 30.8 PLANNING
OF COMBINED TREATMENTS 520
30.9 QUALITY ASSURANCE AND DOSIMETRIC PLAN VERIFICATION 521 30.10
CONCLUSION 522
REFERENCES 523
31 ONLINE IRRADIATION CONTROL BY MEANS OF PET 527
FINE FIEDLER, DANIELA KUNATH, MARIEN PRIEGNITZ, AND WOLFGANG ENGHARDT
31.1 INTRODUCTION 527
31.2 PHYSICAL BACKGROUND 528
31.3 TECHNOLOGY AND IMPLEMENTATION 531
31.4 CURRENT PET INSTALLATIONS 534
31.4.1 GSI HELMHOLTZZENTRUM FUER SCHWERIONENFORSCHUNG, DARMSTADT, GERMANY
534
31.4.2 HIMAC, CHIBA, JAPAN 535
31.4.3 NATIONAL CANCER CENTER HOSPITAL EAST, KASHIWA, JAPAN 535
31.4.4 HYOGO ION BEAM MEDICAL CENTER, TATSUNO, JAPAN 536 31.4.5 CATANA,
CATANIA, ITALIA 536
31.4.6 UNIVERSITY OF FLORIDA PROTON THERAPY INSTITUTE, JACKSONVILLE, USA
536
31.4.7 MASSACHUSETTS GENERAL HOSPITAL, BOSTON, USA 536 31.5 CLINICAL
EXAMPLES 537
REFERENCES 541
32 COMPENSATION OF TARGET MOTION 545
CHRISTOPH BERT AND EIKE RIETZEL 32.1 INTRODUCTION 545
32.2 IMPACT OF ORGAN MOTION 546
IMAGE 13
CONTENTS XIX
32.3 MOTION MONITORING 546
32.4 TIME-RESOLVED VOLUMETRIE IMAGING 548
32.5 TREATMENT TECHNIQUES FOR INTRAFRACTIONALLY MOVING ORGANS 548 32.6
RESCANNING 549
32.7 GATING 550
32.8 BEAM TRACKING 552
32.9 COMPARISON OF MOTION MITIGATION TECHNIQUES 553
32.10 CONCLUSIONS 556
REFERENCES 557
33 INDUSTRIAL ROBOTS FOR PATIENT SUPPORT 559
ANDRES SOMMER 33.1 INTRODUCTION 559
33.2 PATIENT TABLES FOR CONVENTIONAL RT 560
33.3 PATIENT TABLES FOR IBT 561
33.3.1 POSITIONER FOR A GANTRY 561
33.3.2 POSITIONER FOR A FIXED BEAM 561
33.3.3 PRECISION 562
33.4 IMAGING CAPABILITY 563
33.5 TABLETOP 563
33.6 FACILITY WORKFLOW AND QA 564
33.7 SAFETY ASPECTS IN MEDICAL EQUIPMENT 565
33.7.1 COLLISION CONTROL 565
33.7.2 SPEED 565
33.7.3 CONTROL STANDARDS 565
33.7.4 POWERFAILURE 566
33.8 DESIGN PRINCIPLES OF ROBOTIC PATIENT POSITIONERS 566
33.8.1 CUSTOM MANUFACTURED SOLUTIONS 566
33.8.2 STANDARDIZED SOLUTIONS 568
33.9 DESIGN STEPS AND CHALLENGES 570
33.9.1 SERVICE AND MAINTENANCE 571
33.9.2 THE USER INTERFACE 571
33.10 HISTORY AND TODAY S SOLUTIONS 572
33.10.1 THE PIONEERS OF ROBOTIC POSITIONERS 572
33.10.2 CURRENT SOLUTIONS 572
33.11 OUTLOOK 574
REFERENCES 576
PART VIII INDIVIDUAL FACILITIES AND MANAGEMENT ISSUES
34 TWENTY YEARS OF PROTON RADIATION THERAPY AT LOMA LINDA UNIVERSITY
MEDICAL CENTER 581
JERRY D. SLATER 34.1 INTRODUCTION 581
34.2 THE ORIGIN OF PROTON THERAPY AT LLUMC 582
IMAGE 14
XX CONTENTS
34.3 DEVELOPING CLINICAL STRATEGIES FOR PT 583
34.4 CLINICAL APPLICATIONS 584
34.4.1 STEREOTACTIC RADIOSURGERY OF THE CENTRAL NERVOUS SYSTEM AND BASE
OF SKULL 585
34.4.2 FRACTIONATED PROTON TREATMENT FOR TUMORS OF THE CENTRAL NERVOUS
SYSTEM 586
34.4.3 DISEASES OF THE EYE 586
34.4.4 TUMORS OF THE HEAD AND NECK 586
34.4.5 LUNG CANCER 587
34.4.6 BREAST CANCER 587
34.4.7 HEPATOCELLULAR CARCINOMA 588
34.4.8 PROSTATE CANCER 588
34.4.9 PEDIATRIE TUMORS 589
34.5 CLINICAL PERSPECTIVE 590
34.6 THE RESEARCH FOUNDATION 591
34.7 LOOKING AHEAD 592
REFERENCES 593
35 THE FRANCIS H. BURR PROTON THERAPY CENTER 597
JAY FLANZ, HANNE KOOY, AND THOMAS F. DELANEY 35.1 INTRODUCTION 597
35.2 THE FACILITY 598
35.2.1 CYCLOTRON ACCELERATOR 599
35.2.2 THE BTS INCLUDING DEGRADER AND ENERGY ANALYZER ... 600 35.2.3
GANTRIES 601
35.2.4 BEAM DELIVERY SYSTEMS 601
35.2.5 PPS 601
35.2.6 FIXED-BEAM TREATMENT ROOMS 602
35.2.7 COMPUTER CONTROL SYSTEM 602
35.2.8 SAFETY SYSTEM 602
35.2.9 BUILDING 603
35.3 MISSION AND CAPACITY 603
35.4 CLINICAL RESULTS 605
35.5 SYSTEM STATISTICS 606
35.6 OUTLOOK 608
REFERENCES 609
36 HIMAC: A NEW START FOR HEAVY IONS 611
TADASHI KAMADA AND HIROHIKO TSUJII 36.1 INTRODUCTION 611
36.2 CIRTATNIRS 612
36.3 TREATMENT RESULTS BY TUMOR TYPE 614
36.3.1 HEAD AND NECK CANCER 614
36.3.2 LUNG CANCER 615
36.3.3 LIVERCANCER 616
36.3.4 PROSTATE CANCER 616
IMAGE 15
CONTENTS XXI
36.3.5 BONE AND SOFT-TISSUE SARCOMAS 617
36.3.6 RECTAL CANCER 618
36.4 FUTURE PROSPECTS FOR CIRT 619
36.5 SUMMARY 619
REFERENCES 620
37 A NATIONAL ACTION PLAN IN JAPAN: FROM EXPERIMENTAL STUDIES TO HIGHLY
ADVANCED MEDICAL TECHNOLOGY 623
KOJI NODA 37.1 INTRODUCTION 623
37.2 PROGRESS OF HIMAC 624
37.3 TECHNOLOGY DEVELOPMENT AND MEDICAL PHYSICS AT HIMAC 625 37.3.1 BEAM
DELIVERY SYSTEM 626
37.3.2 MEDICAL PHYSICS PROGRAM 628
37.4 DOWNSIZED VERSION OF HIMAC 630
37.4.1 DESIGN AND R&D WORK 630
37.4.2 CONSTRUCTION OF A PILOT FACILITY 632
37.5 NEW TREATMENT RESEARCH FACILITY PROJECT AT NIRS 632
37.5.1 FACILITY PLANNING 633
37.5.2 3D PENCIL BEAM RESCANNING 633
37.5.3 ROTATING GANTRY 636
37.6 JAPAN S NATIONAL ACTION PLAN 637
REFERENCES 638
38 OPERATIONAL AND TRAINING ISSUES RELATED TO FACILITY START-UP 641
NANCY P. MENDENHALL AND ZUOFENG LI 38.1 INTRODUCTION 641
38.1.1 GOVERNING PRINCIPLES 641
38.2 OPERATIONAL AND TRAINING ISSUES 642
38.2.1 PROGRAMDESIGN 642
38.2.2 OPERATIONAL ISSUES 646
38.2.3 TASKS 650
38.3 CONCLUSION 658
REFERENCE 658
PART EX FUTURE DEVELOPMENTS
39 THE SINGLE-ROOM ION BEAM FACILITY 661
KENNETH P. GALL 39.1 INTRODUCTION 661
39.2 PROTON THERAPY SYSTEM COST 662
39.3 AN EXAMPLE OF A PT SYSTEM THAT REDUCES SIZE AND COMPLEXITY 663
39.4 SYSTEM DESCRIPTION 665
39.5 DOSIMETRIC PROPERTIES 666
39.6 FACILITY 667
IMAGE 16
XXII CONTENTS
39.7 CHALLENGES 669
39.7.1 STRAY MAGNETIC FIELD 670
39.7.2 HEAD LEAKAGE 670
39.7.3 COMPATIBILITY WITH IMPT 670
39.8 OUTLOOK 671
REFERENCES 672
40 SMALLER - LIGHTER - CHEAPER: NEW TECHNOLOGICAL CONCEPTS IN PROTON
THERAPY 673
JOHN CAMERON AND NIEK SCHREUDER 40.1 INTRODUCTION 673
40.2 PT TECHNOLOGY CIRCA 2010 674
40.3 FUTURE SYSTEMS 676
40.4 DEFINE WHAT YOU WANT TO TREAT 676
40.5 MAINTAIN THE BALLISTIC ADVANTAGES OF PROTON BEAMS 678 40.6 SMALLER
AND LIGHTER ACCELERATORS, GANTRIES, AND BEAM LINES .... 679 40.7
SPREADOFPT 681
40.8 TREATMENT TIMES AND SYSTEM AVAILABILITY 682
40.9 GENERAL CONSIDERATIONS OF COST REDUCTION 682
40.10 COMMISSIONING AND STAFF TRAINING 683
40.11 SUMMARY 684
REFERENCES 685
41 NEW FACILITIES: PLANS AND PROPOSALS 687
RAMONA MAYER AND STANISLAV VATNITSKY 41.1 INTRODUCTION 687
41.2 SITUATION IN EUROPE 688
41.2.1 PROTON THERAPY FACILITIES 688
41.2.2 CARBON ION BEAM FACILITIES 688
41.2.3 DUAL ION BEAM FACILITIES 688
41.2.4 COOPERATIONS WITHIN THE ION BEAM COMMUNITY 696 41.3 SITUATION IN
THE USA 696
41.4 SITUATION IN ASIA 698
41.4.1 PT FACILITIES 698
41.4.2 CARBON ION BEAM FACILITIES 698
41.4.3 DUAL ION BEAM FACILITIES 700
41.5 CONCLUSION 700
REFERENCES 700
42 FUTURE DIRECTIONS IN ION BEAM THERAPY 703
DANIEL HABERMEHL, STEPHANIE COMBS, AND JUERGEN DEBUS 42.1 INTRODUCTION
703
42.2 FUTURE CONTRIBUTIONS OF RADIOBIOLOGY TO IBT 704
42.3 FUTURE CHALLENGES OF CLINICAL TRIALS IN IBT 707
42.3.1 COMBINED TREATMENT OF INTENSITY- MODULATED X-RAY RT (IMRT) AND
IBT 708
IMAGE 17
CONTENTS XXIII
42.3.2 COMPARISON OF IBT WITH NONRADIOTHERAPEUTIC MODALITIES 708
42.3.3 TESTING OF DIFFERENT FRACTIONATION SCHEDULES WITH CURATIVE INTENT
USING IBT IN BOTH ARMS 709
42.3.4 DOSE-SEARCHING TRIALS COMPARING IBT AT DIFFERENT DOSE LEVELS 709
42.3.5 COMBINATION OF CONCURRENT SYSTEMIC THERAPIES WITH IBT AS COMPARED
TO CONCURRENT CHEMOTHERAPY WITH X-RAY RT 709
42.3.6 COMPARISON OF HEAVY ION THERAPY WITH PT 709 42.4 FUTURE ADVANCES
IN MEDICAL PHYSICS OF IBT 712
42.4.1 MOVING ORGANS 712
42.4.2 ROLE OF POSITRON EMISSION TOMOGRAPHY 714
42.5 SUMMARY 714
REFERENCES 715
INDEX 719
NAME INDEX 729
|
any_adam_object | 1 |
author2 | Linz, Ute 1953- |
author2_role | edt |
author2_variant | u l ul |
author_GND | (DE-588)110284569 |
author_facet | Linz, Ute 1953- |
building | Verbundindex |
bvnumber | BV040623140 |
classification_rvk | UM 5000 |
ctrlnum | (OCoLC)838690477 (DE-599)BVBBV040623140 |
dewey-full | 615.842 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 615 - Pharmacology and therapeutics |
dewey-raw | 615.842 |
dewey-search | 615.842 |
dewey-sort | 3615.842 |
dewey-tens | 610 - Medicine and health |
discipline | Physik Medizin |
edition | 1. ed. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01901nam a2200445 c 4500</leader><controlfield tag="001">BV040623140</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20180612 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">121210s2012 ad|| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">11,N18</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642214134</subfield><subfield code="c">Gb. : ca. EUR 149.75 (DE) (freier Pr.), ca. sfr 201.00 (freier Pr.)</subfield><subfield code="9">978-3-642-21413-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3642214134</subfield><subfield code="c">Gb. : ca. EUR 149.75 (DE) (freier Pr.), ca. sfr 201.00 (freier Pr.)</subfield><subfield code="9">3-642-21413-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783662520864</subfield><subfield code="9">978-3-662-52086-4</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9783642214134</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)838690477</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV040623140</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-19</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">615.842</subfield><subfield code="2">22/ger</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UM 5000</subfield><subfield code="0">(DE-625)145902:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Ion beam therapy</subfield><subfield code="b">fundamentals, technology, clinical applications</subfield><subfield code="c">Ute Linz ed.</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin ; Heidelberg [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">2012</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXXV, 729 Seiten</subfield><subfield code="b">Ill., graph. Darst.</subfield><subfield code="c">235 mm x 155 mm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Biological and medical physics, biomedical engineering</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Hier auch später erschienene, unveränderte Nachdrucke</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Strahlentherapie</subfield><subfield code="0">(DE-588)4057833-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Ionenstrahl</subfield><subfield code="0">(DE-588)4162347-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Strahlentherapie</subfield><subfield code="0">(DE-588)4057833-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Ionenstrahl</subfield><subfield code="0">(DE-588)4162347-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DDB</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Linz, Ute</subfield><subfield code="d">1953-</subfield><subfield code="0">(DE-588)110284569</subfield><subfield code="4">edt</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="t">Ion Beam Therapy</subfield><subfield code="u">978-3-642-21414-1</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=025450564&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-025450564</subfield></datafield></record></collection> |
id | DE-604.BV040623140 |
illustrated | Illustrated |
indexdate | 2024-07-10T00:27:40Z |
institution | BVB |
isbn | 9783642214134 3642214134 9783662520864 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-025450564 |
oclc_num | 838690477 |
open_access_boolean | |
owner | DE-19 DE-BY-UBM |
owner_facet | DE-19 DE-BY-UBM |
physical | XXXV, 729 Seiten Ill., graph. Darst. 235 mm x 155 mm |
publishDate | 2012 |
publishDateSearch | 2012 |
publishDateSort | 2012 |
publisher | Springer |
record_format | marc |
series2 | Biological and medical physics, biomedical engineering |
spelling | Ion beam therapy fundamentals, technology, clinical applications Ute Linz ed. 1. ed. Berlin ; Heidelberg [u.a.] Springer 2012 XXXV, 729 Seiten Ill., graph. Darst. 235 mm x 155 mm txt rdacontent n rdamedia nc rdacarrier Biological and medical physics, biomedical engineering Hier auch später erschienene, unveränderte Nachdrucke Strahlentherapie (DE-588)4057833-1 gnd rswk-swf Ionenstrahl (DE-588)4162347-2 gnd rswk-swf Strahlentherapie (DE-588)4057833-1 s Ionenstrahl (DE-588)4162347-2 s DDB Linz, Ute 1953- (DE-588)110284569 edt Erscheint auch als Online-Ausgabe Ion Beam Therapy 978-3-642-21414-1 DNB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=025450564&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Ion beam therapy fundamentals, technology, clinical applications Strahlentherapie (DE-588)4057833-1 gnd Ionenstrahl (DE-588)4162347-2 gnd |
subject_GND | (DE-588)4057833-1 (DE-588)4162347-2 |
title | Ion beam therapy fundamentals, technology, clinical applications |
title_auth | Ion beam therapy fundamentals, technology, clinical applications |
title_exact_search | Ion beam therapy fundamentals, technology, clinical applications |
title_full | Ion beam therapy fundamentals, technology, clinical applications Ute Linz ed. |
title_fullStr | Ion beam therapy fundamentals, technology, clinical applications Ute Linz ed. |
title_full_unstemmed | Ion beam therapy fundamentals, technology, clinical applications Ute Linz ed. |
title_short | Ion beam therapy |
title_sort | ion beam therapy fundamentals technology clinical applications |
title_sub | fundamentals, technology, clinical applications |
topic | Strahlentherapie (DE-588)4057833-1 gnd Ionenstrahl (DE-588)4162347-2 gnd |
topic_facet | Strahlentherapie Ionenstrahl |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=025450564&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT linzute ionbeamtherapyfundamentalstechnologyclinicalapplications |