A new look at the world: fractal geometry
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
London
RBA
2012
|
Schriftenreihe: | Everything is mathematical
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis Klappentext |
Beschreibung: | 142 S. Ill., graph. Darst. |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV040603583 | ||
003 | DE-604 | ||
005 | 20121206 | ||
007 | t | ||
008 | 121203s2012 ad|| |||| 00||| eng d | ||
035 | |a (OCoLC)823231391 | ||
035 | |a (DE-599)BVBBV040603583 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-703 | ||
084 | |a SK 380 |0 (DE-625)143235: |2 rvk | ||
100 | 1 | |a Binimelis Bassa, Maria Isabel |e Verfasser |4 aut | |
245 | 1 | 0 | |a A new look at the world |b fractal geometry |c Maria Isabel Binimelis Bassa |
264 | 1 | |a London |b RBA |c 2012 | |
300 | |a 142 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Everything is mathematical | |
650 | 0 | 7 | |a Fraktalgeometrie |0 (DE-588)4473576-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Fraktalgeometrie |0 (DE-588)4473576-5 |D s |
689 | 0 | |5 DE-604 | |
856 | 4 | 2 | |m Digitalisierung UB Bayreuth |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=025431292&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
856 | 4 | 2 | |m Digitalisierung UB Bayreuth |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=025431292&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |3 Klappentext |
999 | |a oai:aleph.bib-bvb.de:BVB01-025431292 |
Datensatz im Suchindex
_version_ | 1804149694543167488 |
---|---|
adam_text | Contents
Preface
.............................................
Chapter
1.
The Evolution of Geometry:
Mandelbrot versus Euclid
...................................................................................................... 9
The terrible deity
.................................................................................................................................. 15
A snapshot of complexity, urban development and linguistics
.............................. 17
Cities, more than just maps
..................................................................................................... 20
Geometry and linguistics: is geometric thinking innate?
.................................... 22
The prominence of Euclid
............................................................................................................ 23
The birth of the infinite straight line
....................................................................................... 26
A step towards the infinite:
projective
geometry
...................................................... 28
Painting a canvas of a swimming pool
............................................................................ 29
Summing the angles of a triangle
............................................................................................... 32
A note on topology
..................................................................................................................... 35
Flying over Greenland: the model of the Universe
........................................................ 36
The
Erlangen
Programme: what is geometry?
.......................................................... 41
A grain of pollen and the geometry
ornature
................................................................... 43
Chapter
2.
The Unknown Dimension:
Mapping the Universe
............................................................................................................ 51
A Universe in a drop of water
...................................................................................................... 51
Infinity in a circle
.................................................................................................................................. 55
Wars and border lengths
................................................................................................................... 61
Everything depends on the scale used for measuring
................................................... 64
Coverings
................................................................................................................................................... 67
Curves that cover the plane
........................................................................................................... 71
The Peano curve
................................................................................................................................... 72
The Hubert curve
................................................................................................................................ 75
Triangles, sponges and snowflakes: the fractal dimension
........................................... 78
The dragon curve
................................................................................................................................. 88
Chapter
3.
Dalmatians and Dragons: Linear Fractals
............................................ 95
Puddings and tents
............................................................................................................................... 99
CONTENTS
The Devil s staircase
............................................................................................................................ 101
What do the following have in common: dust, snowflakes and sponges?
........ 103
A collage to reconstruct anything
.............................................................................................. 106
Chapter
4.
Order Disguised
...................................................................................................... 109
Did Mandelbrot discover the Mandelbrot set?
.................................................................. 109
Impulsive-compulsive calculations
............................................................................................ 112
Prisoner points or escaping from the labyrinth
................................................................. 113
The Universe in a grain of sand
.................................................................................................. 119
Variations on a theme
........................................................................................................................ 122
The sound of chaos
..................................................................................................................... 124
The search for a definition
............................................................................................................. 125
Nature is not fractal
............................................................................................................................. 127
Awakening from the deterministic dream
.................................................................... 128
A butterfly in Brazil and a moth in Singapore
.................................................................. 130
The attraction of chaos
..................................................................................................................... 133
Bibliography
............................................................................................................................................ 137
Index
............................................................................................................................................................. 139
A New Look
at the World
Fractal geometry
Many natural phenomena exhibit irregular and even chaotic
shapes that cannot be analysed using traditional geometry: the
sponginess of the clouds, the branches of trees, the zig-zags of
lightning bolts. We can seek insights into these apparently random
elements of nature in the revolutionary mathematical concept of
fractals, a new way of looking at the world based on the maxim,
the whole contains the part and the part the whole.
|
any_adam_object | 1 |
author | Binimelis Bassa, Maria Isabel |
author_facet | Binimelis Bassa, Maria Isabel |
author_role | aut |
author_sort | Binimelis Bassa, Maria Isabel |
author_variant | b m i b bmi bmib |
building | Verbundindex |
bvnumber | BV040603583 |
classification_rvk | SK 380 |
ctrlnum | (OCoLC)823231391 (DE-599)BVBBV040603583 |
discipline | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01425nam a2200325 c 4500</leader><controlfield tag="001">BV040603583</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20121206 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">121203s2012 ad|| |||| 00||| eng d</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)823231391</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV040603583</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 380</subfield><subfield code="0">(DE-625)143235:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Binimelis Bassa, Maria Isabel</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A new look at the world</subfield><subfield code="b">fractal geometry</subfield><subfield code="c">Maria Isabel Binimelis Bassa</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">London</subfield><subfield code="b">RBA</subfield><subfield code="c">2012</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">142 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Everything is mathematical</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Fraktalgeometrie</subfield><subfield code="0">(DE-588)4473576-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Fraktalgeometrie</subfield><subfield code="0">(DE-588)4473576-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=025431292&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=025431292&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Klappentext</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-025431292</subfield></datafield></record></collection> |
id | DE-604.BV040603583 |
illustrated | Illustrated |
indexdate | 2024-07-10T00:27:06Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-025431292 |
oclc_num | 823231391 |
open_access_boolean | |
owner | DE-703 |
owner_facet | DE-703 |
physical | 142 S. Ill., graph. Darst. |
publishDate | 2012 |
publishDateSearch | 2012 |
publishDateSort | 2012 |
publisher | RBA |
record_format | marc |
series2 | Everything is mathematical |
spelling | Binimelis Bassa, Maria Isabel Verfasser aut A new look at the world fractal geometry Maria Isabel Binimelis Bassa London RBA 2012 142 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Everything is mathematical Fraktalgeometrie (DE-588)4473576-5 gnd rswk-swf Fraktalgeometrie (DE-588)4473576-5 s DE-604 Digitalisierung UB Bayreuth application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=025431292&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis Digitalisierung UB Bayreuth application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=025431292&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA Klappentext |
spellingShingle | Binimelis Bassa, Maria Isabel A new look at the world fractal geometry Fraktalgeometrie (DE-588)4473576-5 gnd |
subject_GND | (DE-588)4473576-5 |
title | A new look at the world fractal geometry |
title_auth | A new look at the world fractal geometry |
title_exact_search | A new look at the world fractal geometry |
title_full | A new look at the world fractal geometry Maria Isabel Binimelis Bassa |
title_fullStr | A new look at the world fractal geometry Maria Isabel Binimelis Bassa |
title_full_unstemmed | A new look at the world fractal geometry Maria Isabel Binimelis Bassa |
title_short | A new look at the world |
title_sort | a new look at the world fractal geometry |
title_sub | fractal geometry |
topic | Fraktalgeometrie (DE-588)4473576-5 gnd |
topic_facet | Fraktalgeometrie |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=025431292&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=025431292&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT binimelisbassamariaisabel anewlookattheworldfractalgeometry |