From tube maps to neural networks: the theory of graphs
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
London
RBA
2012
|
Schriftenreihe: | Everything is mathematical
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis Klappentext |
Beschreibung: | 143 S. Ill., graph. Darst. |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV040603546 | ||
003 | DE-604 | ||
005 | 20121206 | ||
007 | t | ||
008 | 121203s2012 ad|| |||| 00||| eng d | ||
035 | |a (OCoLC)823231365 | ||
035 | |a (DE-599)BVBBV040603546 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-703 | ||
084 | |a SK 890 |0 (DE-625)143267: |2 rvk | ||
100 | 1 | |a Alsina, Claudi |d 1952- |e Verfasser |0 (DE-588)143990934 |4 aut | |
245 | 1 | 0 | |a From tube maps to neural networks |b the theory of graphs |c Claudi Alsina |
264 | 1 | |a London |b RBA |c 2012 | |
300 | |a 143 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Everything is mathematical | |
650 | 0 | 7 | |a Graphentheorie |0 (DE-588)4113782-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Graphentheorie |0 (DE-588)4113782-6 |D s |
689 | 0 | |5 DE-604 | |
856 | 4 | 2 | |m Digitalisierung UB Bayreuth |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=025431255&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
856 | 4 | 2 | |m Digitalisierung UB Bayreuth |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=025431255&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |3 Klappentext |
999 | |a oai:aleph.bib-bvb.de:BVB01-025431255 |
Datensatz im Suchindex
_version_ | 1804149694489690112 |
---|---|
adam_text | Contents
Preface
........................................................................................................................................................ 11
Chapter l.An Introduction to Graphs
.............................................................................. 13
From
Königsberg
with love
........................................................................................................... 14
The ABC of graph theory
.............................................................................................................. 18
Polygonal and complete graphs
................................................................................................... 23
Planar graphs
............................................................................................................................................ 25
The problem of the wells and the enemy families
.................................................. 26
The trees do let you see the forest
............................................................................................. 28
Graphs in everyday life
...................................................................................................................... 33
Chapter
2.
Graphs and Colours
.............................................................................................. 39
Maps and colours
.................................................................................................................................. 39
Graphs that can be coloured with two or three colours
............................................. 41
Four colours are enough
.................................................................................................................. 43
The chromatic number
..................................................................................................................... 47
Chapter
3.
Graphs, Circuits and Optimisation
........................................................... 51
Eularian circuits
..................................................................................................................................... 51
The Chinese postman problem
................................................................................................... 53
Hamiltonian circuits
............................................................................................................................ 54
The traveller problem
......................................................................................................................... 56
Critical paths
............................................................................................................................................ 58
Graphs and planning: the P.E.R.T. system
............................................................................ 59
Organigram showing the steps of a P.E.R.T.
.............................................................. 60
Chapter
4.
Graphs and Geometry
........................................................................................ 65
Eulers
surprising formula
................................................................................................................ 66
Eulers
formula with just faces and vertices
........................................................................ 69
There is always a triangle, a quadrilateral or a pentagon
............................................. 71
CONTENTS
All the faces different? Impossible!
............................................................................................ 75
Graphs and mosaics
............................................................................................................................. 75
Other geometric problems with graphs
................................................................................. 79
Hamiltonian circuits in polyhedrons
................................................................................ 79
Graphs on non-planar surfaces
............................................................................................. 81
Finite geometries
........................................................................................................................... 82
Chapter
5.
Surprising Applications of Graphs
............................................................ 85
Graphs and the Internet
................................................................................................................... 85
Graphs in chemistry and physics
................................................................................................. 87
Graphs in architecture
........................................................................................................................ 89
Graphs in city planning
..................................................................................................................... 95
Graphs in social networking
.......................................................................................................... 97
Stanley Milgram s small world
............................................................................................ 99
Graphs and timetables
........................................................................................................................ 99
NP-complete problems
............................................................................................................ 101
Recreational graphs
............................................................................................................................. 103
Who will say
20? ........................................................................................................................... 103
The maze in Rouse Ball s garden
....................................................................................... 103
The snake game
.............................................................................................................................. 104
The elegant numbering of a graph
.................................................................................... 104
Towers of Hanoi
............................................................................................................................ 105
The
NIM
game
.............................................................................................................................. 106
Two circuits from Martin Gardner
.................................................................................... 106
The circuit in a rectangle
.................................................................................................. 106
The circuit on a grid
........................................................................................................... 107
Knight routes in chess
................................................................................................................ 108
Lewis Carroll and Eularian graphs
..................................................................................... 109
The four circle problem
............................................................................................................ 110
Magic stars
........................................................................................................................................... 110
The magic hexagram
...........................................................................................................
Ill
Graphs and education
........................................................................................................................ 113
CONTENTS
Graphs and neural networks
.......................................................................................................... 115
Graphs and linear programming
................................................................................................. 118
Epilogue
..................................................................................................................................................... 125
Appendix. Graphs, Sets and Relations
.............................................................................. 127
Equivalence relations
.......................................................................................................................... 130
Ordered relations
................................................................................................................................... 131
Functions
.................................................................................................................................................... 132
Fuzzy sets and graphs
......................................................................................................................... 135
Glossary
...................................................................................................................................................... 137
Bibliography
............................................................................................................................................ 139
Index
............................................................................................................................................................. 141
From Tube Maps to
Neural Networks
The theory of graphs
A graph is an extraordinarily simple construct: a set of points
joined by lines. Graphs include everything from underground
maps to the delivery route taken by a postal worker. In fact,
graphs can describe the multitude of networks that form the
basis of our world. Carefully observing these simple structures
opens our eyes to a universe of links and connections in
which mathematics reigns supreme.
|
any_adam_object | 1 |
author | Alsina, Claudi 1952- |
author_GND | (DE-588)143990934 |
author_facet | Alsina, Claudi 1952- |
author_role | aut |
author_sort | Alsina, Claudi 1952- |
author_variant | c a ca |
building | Verbundindex |
bvnumber | BV040603546 |
classification_rvk | SK 890 |
ctrlnum | (OCoLC)823231365 (DE-599)BVBBV040603546 |
discipline | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01427nam a2200325 c 4500</leader><controlfield tag="001">BV040603546</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20121206 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">121203s2012 ad|| |||| 00||| eng d</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)823231365</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV040603546</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 890</subfield><subfield code="0">(DE-625)143267:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Alsina, Claudi</subfield><subfield code="d">1952-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)143990934</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">From tube maps to neural networks</subfield><subfield code="b">the theory of graphs</subfield><subfield code="c">Claudi Alsina</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">London</subfield><subfield code="b">RBA</subfield><subfield code="c">2012</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">143 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Everything is mathematical</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Graphentheorie</subfield><subfield code="0">(DE-588)4113782-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Graphentheorie</subfield><subfield code="0">(DE-588)4113782-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=025431255&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=025431255&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Klappentext</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-025431255</subfield></datafield></record></collection> |
id | DE-604.BV040603546 |
illustrated | Illustrated |
indexdate | 2024-07-10T00:27:06Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-025431255 |
oclc_num | 823231365 |
open_access_boolean | |
owner | DE-703 |
owner_facet | DE-703 |
physical | 143 S. Ill., graph. Darst. |
publishDate | 2012 |
publishDateSearch | 2012 |
publishDateSort | 2012 |
publisher | RBA |
record_format | marc |
series2 | Everything is mathematical |
spelling | Alsina, Claudi 1952- Verfasser (DE-588)143990934 aut From tube maps to neural networks the theory of graphs Claudi Alsina London RBA 2012 143 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Everything is mathematical Graphentheorie (DE-588)4113782-6 gnd rswk-swf Graphentheorie (DE-588)4113782-6 s DE-604 Digitalisierung UB Bayreuth application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=025431255&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis Digitalisierung UB Bayreuth application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=025431255&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA Klappentext |
spellingShingle | Alsina, Claudi 1952- From tube maps to neural networks the theory of graphs Graphentheorie (DE-588)4113782-6 gnd |
subject_GND | (DE-588)4113782-6 |
title | From tube maps to neural networks the theory of graphs |
title_auth | From tube maps to neural networks the theory of graphs |
title_exact_search | From tube maps to neural networks the theory of graphs |
title_full | From tube maps to neural networks the theory of graphs Claudi Alsina |
title_fullStr | From tube maps to neural networks the theory of graphs Claudi Alsina |
title_full_unstemmed | From tube maps to neural networks the theory of graphs Claudi Alsina |
title_short | From tube maps to neural networks |
title_sort | from tube maps to neural networks the theory of graphs |
title_sub | the theory of graphs |
topic | Graphentheorie (DE-588)4113782-6 gnd |
topic_facet | Graphentheorie |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=025431255&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=025431255&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT alsinaclaudi fromtubemapstoneuralnetworksthetheoryofgraphs |