Micromechanics of composite materials: a generalized multiscale analysis approach
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Amsterdam [u.a.]
Elsevier, Butterworth-Heinemann
2013
|
Ausgabe: | 1. ed. |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis Klappentext |
Beschreibung: | Includes bibliographical references and index |
Beschreibung: | XXII, 984 S., [12 Bl.] Ill., graph. Darst. |
ISBN: | 9780123970350 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV040587312 | ||
003 | DE-604 | ||
005 | 20130826 | ||
007 | t | ||
008 | 121123s2013 ad|| |||| 00||| eng d | ||
020 | |a 9780123970350 |9 978-0-12-397035-0 | ||
035 | |a (OCoLC)820421513 | ||
035 | |a (DE-599)BVBBV040587312 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-703 |a DE-1050 |a DE-83 | ||
084 | |a UQ 8420 |0 (DE-625)146597: |2 rvk | ||
084 | |a ZM 3200 |0 (DE-625)157022: |2 rvk | ||
084 | |a ZM 7020 |0 (DE-625)157098: |2 rvk | ||
100 | 1 | |a Aboudi, Jacob |e Verfasser |4 aut | |
245 | 1 | 0 | |a Micromechanics of composite materials |b a generalized multiscale analysis approach |c Jacob Aboudi ; Steven M. Arnold ; Brett A. Bednarcyk |
250 | |a 1. ed. | ||
264 | 1 | |a Amsterdam [u.a.] |b Elsevier, Butterworth-Heinemann |c 2013 | |
300 | |a XXII, 984 S., [12 Bl.] |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
500 | |a Includes bibliographical references and index | ||
650 | 4 | |a Micromechanics | |
650 | 0 | 7 | |a Verbundwerkstoff |0 (DE-588)4062670-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mikromechanik |0 (DE-588)4205811-9 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Verbundwerkstoff |0 (DE-588)4062670-2 |D s |
689 | 0 | 1 | |a Mikromechanik |0 (DE-588)4205811-9 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Arnold, Steven M. |e Verfasser |4 aut | |
700 | 1 | |a Bednarcyk, Brett A. |e Verfasser |4 aut | |
856 | 4 | 2 | |m Digitalisierung UB Bayreuth |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=025415337&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
856 | 4 | 2 | |m Digitalisierung UB Bayreuth |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=025415337&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |3 Klappentext |
999 | |a oai:aleph.bib-bvb.de:BVB01-025415337 |
Datensatz im Suchindex
_version_ | 1804149671061356544 |
---|---|
adam_text | Contents
Preface
..........................................................................................................xvii
Acknowledgments
............................................................................................xix
Acronyms
........................................................................................................xxi
Chapter
1
Introduction
......................................................................................1
1.1
Fundamentals of Composite Materials and Structures
.........................................2
1.2
Modeling of Composites
.....................................................................................10
1.3
Description of the Book Layout
..........................................................................15
1.4
Suggestions on How to Use the Book
................................................................17
Chapter
2
Constituent Material Modeling
..........................................................19
2.1
Reversible Models
...............................................................................................25
2.1.1
Elasticity
.....................................................................................................26
2.1.2
Ramberg-Osgood Nonlinear Elastic Constitutive Equations
.....................33
2.1.3
Viscoelasticity
.............................................................................................34
2.2
Irreversible Deformation Models
........................................................................46
2.2.1
Incremental Plasticity
.................................................................................47
2.2.2
Power-Law Creep
.......................................................................................49
2.2.3
Viscoplasticity
.............................................................................................50
2.3
Damage/Life Models
...........................................................................................58
2.3.1
Continuum-Based Damage
.........................................................................59
2.3.2
Interface Models
.........................................................................................80
2.4
Concluding Remarks
...........................................................................................85
Chapter
3
Fundamentals of the Mechanics of Multiphase Materials
......................87
3.1
Introduction of Scales and Homogenization/Localization
.................................88
3.2
Macromechanics versus Micromechanics
...........................................................90
3.3
Representative Volume Elements (RVEs) and Repeating Unit Cells (RUCs)
... 94
3.4
Volume Averaging
...............................................................................................95
3.5
Homogeneous Boundary Conditions
...................................................................96
3.6
Average Strain Theorem
......................................................................................96
vii
viii Contents
3.7
Average Stress Theorem
......................................................................................97
3.8
Determination of Effective Properties
.................................................................98
3.8.1
Effective Elastic Moduli
.............................................................................98
3.8.2
Relations between Averages: A Direct Approach
.....................................99
3.8.3
Energy Approach
......................................................................................101
3.9
Mechanics of Composite Materials
...................................................................103
3.9.1
The
Voigt
Approximation
......................................................................104
3.9.2
The Reuss Approximation
.....................................................................105
3.9.3
Combined
Voigt
and Reuss Approximations
........................................105
3.9.4
Hill s Theorem
.......................................................................................105
3.9.5
Bounding Theorems
...............................................................................108
3.9.6
The Dilute Approximation
.....................................................................109
3.9.7
The Composite Spheres Assemblage Model
.........................................
Ill
3.9.8
The Self-Consistent Scheme
(SCS)
.......................................................113
3.9.9
The Generalized Self-Consistent Scheme (GSCS)
...............................114
3.9.10
The Differential Scheme (DS)
.............................................................116
3.9.11
The Mori-Tanaka (MT) Theory
...........................................................118
3.9.12
Eshelby Equivalent Inclusion Method
.................................................121
3.9.13
The Strain Concentration Tensors for the Self-Consistent
(SCS)
and Differential Schemes (DS)
.................................................125
3.9.14
The Strain Concentration Tensor for the Mori-Tanaka (MT)
Method
.................................................................................................126
3.9.15
Green s Function/Fourier Series
..........................................................129
3.9.16
Numerical Methods
..............................................................................130
3.10
Comparison of Various Micromechanics Methods for Continuous
Reinforcement
..................................................................................................130
3.11
Levin s Theorem: Extraction of Effective
СТЕ
from Mechanical Effective
Properties
.........................................................................................................134
3.11.1
Multiphase Composite
.........................................................................134
3.11.2
Two-Phase Composite
.........................................................................136
3.11.3
The Generalization of Levin s Theorem: Transformation Fields
.......138
3.12
The Self-Consistent Scheme
(SCS)
and Mori-Tanaka (MT) Method
for Inelastic Composites
..................................................................................144
3.13
Concluding Remarks
.......................................................................................145
Chapter
4
The Method of Cells Micromechanics
...............................................747
4.1
The
MOC
for Continuously Fiber-Reinforced Materials (Doubly Periodic)...
148
4.1.1
Thermomechanical Formulation
..............................................................149
4.1.2
Thermal Conductivities
............................................................................176
Contents
¡χ
4.1.3
Specific
Heats
...........................................................................................178
4.1.4
MOC
with Imperfect Bonding
.................................................................180
4.2
The Method of Cells for Discontinuously Fiber-Reinforced Composites
(Triply Periodic)
................................................................................................181
4.2.1
Thermomechanical Formulation
..............................................................181
4.2.2
Thermal Conductivity
...............................................................................187
4.3
Applications: Unidirectional Continuously Reinforced Composites
................189
4.3.1
Effective Elastic Properties
......................................................................189
4.3.2
Coefficients of Thermal Expansion
..........................................................195
4.3.3
Specific Heat
.............................................................................................197
4.3.4
Yield Surfaces of Metal Matrix Composites
...........................................198
4.3.5
Inelastic Response of Metal Matrix Composites
.....................................205
4.4
Applications: Discontinuously Reinforced (Short-Fiber) Composites
.............212
4.4.1
Effective Elastic Properties
......................................................................212
4.5
Applications: Randomly Reinforced Materials
.................................................217
4.6
Concluding Remarks
.........................................................................................224
Chapter
5
The Generalized Method of Cells Micromechanics
.............................227
5.1
GMC for Discontinuous Reinforced Composites (Triple Periodicity)
.............229
5.1.1
Thermomechanical Formulation
..............................................................229
5.1.2
Thermal Conductivities
............................................................................243
5.1.3
Electric Conductivity
................................................................................243
5.1.4
Specific Heat
.............................................................................................244
5.1.5
Computationally Efficient Reformulation
................................................246
5.2
Specialization of GMC to Continuously Reinforced Composites
(Double Periodicity)
..........................................................................................259
5.3
Applications
.......................................................................................................267
5.3.1
Effective Properties
...................................................................................267
5.3.2
Local Fields
..............................................................................................271
5.3.3
Response of Continuously Reinforced Unidirectional Composites
........277
5.3.4
Discontinuous Reinforced Composites
....................................................323
5.3.5
Modeling Woven PMC Composites
.........................................................336
5.4
Concluding Remarks
.........................................................................................349
Chapter
6
The High-Fidelity Generalized Method of Cells Micromechanics
..........351
6.1
Three-Dimensional (Triply Periodic) High-Fidelity Generalized
Method of Cells with Imperfect Bonding Between the Phases
.......................353
6.1.1
Governing Equations
................................................................................355
6.1.2
Displacement Expansion
..........................................................................358
χ
Contents
6.1.3
Constitutive Equations
..............................................................................359
6.1.4 Determination
of the Unknown
Microvariables......................................360
6.1.5
Imperfect Bonding
....................................................................................363
6.1.6
Summary of Global Equations
.................................................................364
6.2
Specialization to Double Periodicity (for Continuous Fibers,
Anisotropie
Constituents, and Imperfect Bonding)
..............................................................368
6.2.1
Governing Equations
................................................................................368
6.2.2
Displacement Expansion
..........................................................................371
6.2.3
Constitutive Equations
..............................................................................372
6.2.4
Determination of the Unknown
Microvariables......................................373
6.2.5
Imperfect Bonding
....................................................................................374
6.2.6
Summary of Equations
.............................................................................375
6.3
Reformulation of the Two-Dimensional (Doubly Periodic) HFGMC with
Debonding and Inelasticity Effects
...................................................................376
6.3.1
Governing Equations
................................................................................377
6.3.2
Displacement Expansion
..........................................................................377
6.3.3
Constitutive Equations
..............................................................................378
6.3.4
The Determination of the Displacement s
Microvariables in
Terms of the Average Surface Displacements
.........................................382
6.3.5
The Determination of the Average Surface Tractions in
Terms of the Average Surface Displacements
.........................................385
6.3.6
Perfect Bonding: Reduction of the Number of Unknowns
.....................389
6.3.7
Imperfect Bonding
....................................................................................389
6.3.8
Computational Impact of Reformulation
.................................................392
6.4
Contrast Between HFGMC and Finite Element Analysis
(FEA)
.....................395
6.5
Isoparametric Subcell Generalization
...............................................................396
6.6
Doubly Periodic HFGMC Applications
............................................................403
6.6.1
Effective Elastic Properties and Coefficient of Thermal Expansion
(СТЕ)
........................................................................................................403
6.6.2
Local Fields: HFGMC versus Eshelby Solution
......................................406
6.6.3
Local Fields: HFGMC versus
FEA
..........................................................409
6.6.4
Graphite/Aluminum Composite Global Response: HFGMC versus
MCCM
......................................................................................................411
6.6.5
Titanium Composite (SiC/TIMETAL
2
IS) Response: Discretization
Convergence Study
...................................................................................412
6.6.6
Fiber-Matrix Debonding
...........................................................................415
6.6.7
Woven Composite Example: 5HS SiC/SiC
.............................................419
6.6.8
Progressive Damage/Failure of Polymeric Composite
............................423
6.7
Triply Periodic Applications
.............................................................................431
Contents xi
6.7.1 Lattice
Block/Open Cell
...........................................................................431
6.7.2
Micromechanical Analysis of Foams with Internal Pore Pressure
..........437
6.8
Concluding Remarks
.........................................................................................444
Chapter
7
Multiscale Modeling of Composites
..................................................447
7.1
Introduction
........................................................................................................447
7.2
Multiscale Analysis Using Lamination Theory
................................................459
7.2.1
Transverse Tensile and Creep Response of an SiC/Ti Composite
..........465
7.2.2
Fatigue of SiC/Ti-
15-3..............................................................................472
7.2.3
High-Temperature Creep of a Woven Ceramic Matrix Composite
.........477
7.2.4
Progressive Failure of PMC Laminates
...................................................481
7.3
HyperMAC
.........................................................................................................488
7.3.1
Progressive Failure of a T-Stiffened Composite Panel
............................489
7.3.2
Fatigue Life Prediction of a Foam Core Sandwich Beam
.......................491
7.4
Multiscale Generalized Method of Cells (MSGMC)
........................................498
7.4.1
Micro Scale (Constitutive Modeling)
.......................................................501
7.4.2
Meso
Scale (Multiphase Material)
...........................................................501
7.4.3
Macro Scale (Weave)
...............................................................................503
7.4.4
Sensitivity Study of PMC Parameters across Scales
...............................505
7.4.5
Triaxially Braided PMC
...........................................................................518
7.5
FEAMAC
...........................................................................................................522
7.5.1
Stochastic Fiber Breakage of a Longitudinally Reinforced
SiC/Ti Metal Matrix Composite
(MMC)
.................................................523
7.5.2
Progressive Failure of a Notched Composite Laminate Plate
.................533
7.5.3
Delamination Modeling
............................................................................536
7.6
Concluding Remarks
.........................................................................................539
Chapter
8
Fully Coupled Thermomicromechanical Analysis of Multiphase
Composites
...................................................................................541
8.1
Introduction
........................................................................................................541
8.2
Classical Thermomicromechanical Analysis
....................................................542
8.2.1
The Homogenization Procedure
...............................................................542
8.2.2
Solution of the Repeating Unit Cell Problem
..........................................547
8.3
Fully Coupled Thermomicromechanical Analysis
...........................................550
8.3.1
The Energy Equation
................................................................................551
8.3.2
The Homogenized Energy Equation
........................................................552
8.3.3
The Fully Coupled Thermomechanical Solution of the Repeating
Unit Cell Problem
.....................................................................................557
8.4
Applications
.......................................................................................................560
xii Contents
8.4.1
Monolithic Aluminum Subjected to Cyclic Loading
..............................565
8.4.2
AI2O3/AI Subjected to Axial Cyclic Loading
..........................................566
8.4.3
AI2O3/AI Subjected to Transverse Cyclic Loading
.................................568
8.4.4
AI2O3/AI Subjected to Axial and Transverse Shear Cyclic Loading
......571
8.4.5
Full Thermomechanical Coupling with Damage
.....................................574
8.5
Concluding Remarks
.........................................................................................576
Chapter
9
Finite Strain
Micromechanica/
Modeling of Multiphase Composites
.....577
9.1
Introduction
........................................................................................................578
9.2
Finite Strain Generalized Method of Cells (FSGMC)
......................................581
9.2.1
Material Representation of the Monolithic Thermoelastic Material
.......581
9.2.2
FSGMC Formulation for Thermoelastic Composites
..............................585
9.3
Applications Utilizing FSGMC
.........................................................................592
9.3.1
Porous Material Undergoing Large Deformation Subjected to
Hydrostatic Loading
.................................................................................592
9.3.2
Class I—Harmonic Material
....................................................................594
9.3.3
Class II
......................................................................................................595
9.3.4
Class III
—
Generalized
Varga
Material
....................................................596
9.3.5
Discontinuous Reinforced Composites
....................................................597
9.3.6
Continuous Reinforced Composites
.........................................................598
9.4
Finite Strain High-Fidelity Generalized Method of Cells (FSHFGMC)
for Thermoelastic Composites
...........................................................................599
9.4.1
The Homogenization Procedure
...............................................................600
9.4.2
Method of Solution of the RUC Problem
................................................603
9.5
Applications Utilizing FSHFGMC
....................................................................608
9.5.1
Hyperelastic Matrix Composites Exhibiting the Mullins
Damage Effect
..........................................................................................608
9.5.2
Thermoelastic Composites
.......................................................................617
9.5.3
Viscoelastic Composites
...........................................................................620
9.5.4
Thermoviscoelastic Composites
...............................................................639
9.5.5
Thermoelastoplastic Composites
..............................................................653
9.5.6
Elastoplastic Composites with Evolving Damage
...................................659
9.5.7
Thermoviscoplastic Composites
...............................................................669
9.5.8
Optimization of Porous
Microstructures
..................................................675
9.6
Concluding Remarks
.........................................................................................676
Chapter
10
Micromechanical Analysis of Smart Composite Materials
.................677
10.1
Introduction
......................................................................................................678
10.2
Electro-Magneto-Thermo-Elastic Composites
................................................680
Contents xiii
10.2.1
Effective
Behavior of Unidirectional Electro-Magneto-
Thermo-Elastic Composites via GMC
.................................................680
10.2.2
Effective Behavior of Unidirectional Electro-Magneto-
Thermo-Elastic Composites via the High-Fidelity Generalized
Method of Cells (HFGMC)
..................................................................695
10.2.3
Thermo-Electro-Magneto-Elasto-Plastic Lamination Theory
.............699
10.3
Hysteresis Behavior of Ferroelectric Fiber Composites
.................................706
10.3.1
The Modeling of the Monolithic Ferroelectric Material
.....................707
10.3.2
Incremental Micromechanics Analysis
................................................712
10.4
The Response of
Electrostrictive
Composites
................................................714
10.4.1
The Modeling of the Monolithic
Electrostrictive
Material
.................715
10.4.2
Incremental Micromechanical Analysis
..............................................717
10.5
Analysis of
Magnetostrictive
Composites
.......................................................718
10.6
Nonlinear Electro-Magneto-Thermo-Elastic Composites
...............................718
10.7
Shape Memory Alloy Fiber Composites
.........................................................720
10.7.1
Constitutive Models for SMA Response
.............................................721
10.8
Shape Memory Alloy Fiber Composites Undergoing Large Deformations...
731
10.8.1
Finite-Strain Shape Memory Alloy Constitutive Equations
................731
10.8.2
Finite-Strain Constitutive Equations for SMA Fiber Composites
.......736
10.9
Applications
.....................................................................................................737
10.9.1
Piezoelectric Effective Constants
..........................................................737
10.9.2
Electromagnetic Effective Constants
....................................................739
10.9.3
Multiscale Analysis of a Hybrid Smart/Metal Matrix Composite
Laminate
................................................................................................740
10.9.4
Macroscopic Hysteresis Response of Ferroelectric
Fiber Composites
...................................................................................748
10.9.5
Porous Lead Magnesium
Niobáte (PMN)
Electrostrictive
Material
Behavior
................................................................................................751
10.9.6
Nonlinear Electro-Magneto-Thermo-Elastic LiNbCb/PVDF
Composite Response
.............................................................................754
10.9.7
Unidirectional SMA Fiber Composite Response Using Lagoudas
(and Coworkers) Model
........................................................................755
10.9.8
Response of SMA/Epoxy Unidirectional Composite Using
Auricchio (and Coworkers) Model
.......................................................759
10.9.9
Response of SMA/Epoxy Unidirectional Composite Using the
Two-Way Shape Memory Effect Model
...............................................760
10.9.10
Response of SMA/A1 Unidirectional Composite Undergoing
Large Deformations
.............................................................................763
10.9.11
Dynamic Response of SMA Composite Plates
..................................765
xiv Contents
10.9.12
Thermal
Buckling of Activated SMA Composite Plates
.................767
10.10
Concluding Remarks
.....................................................................................770
Chapter
11
Higher-Order Theory for Functionally Graded Materials
..................773
11.1
Background and Motivation
............................................................................775
11.2
Generalized Three-Directional HOTFGM
......................................................779
1.2.1
Model Overview
...................................................................................779
1.2.2
Thermal Analysis
..................................................................................781
1.2.3
Mechanical Analysis
............................................................................786
1.2.4
Higher-Order Theory versus Finite Element Analysis
........................793
11.3
Specialization of the Higher-Order Theory
....................................................794
1.3.1
Two-Directional HOTFGM
..................................................................795
1.3.2
One-Directional HOTFGM
..................................................................798
1.4
Higher-Order Theory for Cylindrical Functionally Graded Materials
(HOTCFGM)
...................................................................................................801
1.4.1
Thermal Analysis
..................................................................................802
1.4.2
Mechanical Analysis
............................................................................804
1.5
HOTFGM Applications
...................................................................................805
1.5.1
Finite Element Validation
.....................................................................806
1.5.2
Microstructural
Effects
.........................................................................814
1.5.3
Microstructural
Tailoring
......................................................................833
1.5.4
Microstructural
Optimization
...............................................................840
1.5.5
Internally Cooled Plate
.........................................................................848
1.5.6
Smart Materials in HOTFGM
..............................................................855
11.6
HOTCFGM Applications
................................................................................863
1.6.1
Case I: Thin-Walled Cylinder Subjected to Internal Pressure
............864
1.6.2
Case II: Thin-Walled Cylinder Subjected to Temperature Gradient...
865
1.6.3
Case III: Transient Thermal Loading
...................................................865
1.6.4
Thrust Cell Liner Response
..................................................................867
11.7
Concluding Remarks
.......................................................................................876
Chapter
12
Wave Propagation in Multiphase and Porous Materials
...................879
12.1
Full Three-Dimensional Theory
......................................................................880
12.2
Specialization to Two-Dimensional Theory for Thermoelastic Materials
.....893
12.3
The Inclusion of Inelastic Effects
...................................................................902
12.4
Two-Dimensional Wave Propagation with Full Thermoelastic Coupling
......905
12.5
Applications
.....................................................................................................910
12.5.1
Acoustic Evaluation of Foam Sandwich Panels
..................................910
12.5.2
Acoustic Evaluation of Heterogeneous Panels
....................................913
Contents xv
12.5.3
Temperature Field Induced by Dynamic Stresses on a Cracked
Composite
.............................................................................................916
12.6
Concluding Remarks
.......................................................................................928
Chapter
13
Micromechanics Software
.............................................................929
13.1
Accessing the Software
...................................................................................930
13.2
Method of Cells Source Code
.........................................................................930
13.2.1
Method of Cells Source Code Example Problem
................................932
13.3
MAC/GMC
4.0................................................................................................932
13.3.1
Getting Started
......................................................................................933
13.3.2
Executing MAC/GMC
4.0
Problems
...................................................933
13.3.3
Format of the MAC/GMC
4.0
Input File
.............................................935
13.3.4
MAC/GMC
4.0
Example Problem
.......................................................936
13.3.5
MAC/GMC
4.0
Example Problem Input
.............................................937
13.4
Concluding Remarks
.......................................................................................941
References
....................................................................................................943
Index
............................................................................................................973
MECHANICAL ENGINEERING
/
MATERIALS
MICROMECHANICS OF
COMPOSITE MATERIALS
A GENERALIZED MULTISCALE ANALYSIS APPROACH
Reliably and efficiently model and analyze composites with this practical digest of a lifetime s
research by recognized leaders in the field
•
Brings together for the first time the findings of a lifetime of research by Jacob Aboudi, a leading authority in the area and the
originator of the generalized method of cells family of micromechanics theories
•
Provides a comprehensive overview of primary micromechanics formulations in use today and offers a unified approach for
multiscale analysis and design of multi-phased composite materials, considering both small strain and large strain formulations
•
Demonstrates the applicability and utility of these methods over a wide range of topics including finite deformation, two-way
thermomechanical coupling, smart composites, functionally graded materials, impact and wave propagation, and multiscale
implementations.
Micromechanics of Composite Materials brings together comprehensive background information on the multiscale nature of
composites, constituent material behavior, damage models and key techniques for multiscale modeling, as well as presenting the
key findings and methods of three leading experts in the field. A unified approach is provided, along with corresponding software, for
conducting analysis and design of conventional and smart composite materials and structures, with numerous examples to illustrate
use and application involving linear and nonlinear material behavior.
Modeling composite behavior is a key challenge in research and industry. When done efficiently and reliably it can save weight,
money, decrease time to market with new innovations and prevent component failure. Micromechanics of Composite Materials
provides tools and knowledge from the cutting edge of aerospace structures and materials technologies, allowing researchers and
engineers within
academia,
industry and government to improve results and streamline development workflows.
About the authors
Jacob Aboudi is a Professor Emeritus at the School of Mechanical Engineering, Tel Aviv University. Israel. He was formerly Head
of the university s Department of Solid Mechanics. Materials and Structures, and Dean of their Faculty of Engineering. He has held
visiting appointments internationally and has written two books and more than
250
journal articles during his
40
years in research.
Steven M. Arnold is Chief of the Mechanics and Life Prediction Branch within the Structures and Materials Division at NASA Glenn
Research Center, as well as Co-founder and Director of NASA s Multiscale Analysis Center of Excellence (MACE). He has over
25
years of research experience resulting in
300
technical publications, two U.S. patents, and an Abe Silverstein Award.
Brett A. Bednarcyk is a Senior Research Engineer and Discipline Lead for Analytical and Computational Mechanics in the Mechanics
and Life Prediction Branch of the Structures and Materials Division. NASA Glenn Research Center. Ohio, USA. He has over
15
years
of research experience.
140
technical publications, and is the primary developer of NASA s MAC/GMC software.
Web link to the companion site: http://booksite.elsevier.com/9780123970350
Related titles from
Elsevier
Hull
&
Bacon | Introduction to Dislocations
і
ISBN
9780080966724
Lee at
al i
Metal Failure Analysis Handbook | ISBN
9780123852045
Vasiliev
&
Morozov | Advanced Mechanics of Composite Materials | ISBN
9780080453729
ISBN
978-0-12-397035-0
ELSEYIER
ACADEMIC PRESS
An imprint of
Elsevier
store.elsevier.com
9 780123 970350
|
any_adam_object | 1 |
author | Aboudi, Jacob Arnold, Steven M. Bednarcyk, Brett A. |
author_facet | Aboudi, Jacob Arnold, Steven M. Bednarcyk, Brett A. |
author_role | aut aut aut |
author_sort | Aboudi, Jacob |
author_variant | j a ja s m a sm sma b a b ba bab |
building | Verbundindex |
bvnumber | BV040587312 |
classification_rvk | UQ 8420 ZM 3200 ZM 7020 |
ctrlnum | (OCoLC)820421513 (DE-599)BVBBV040587312 |
discipline | Physik Werkstoffwissenschaften / Fertigungstechnik |
edition | 1. ed. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01972nam a2200433 c 4500</leader><controlfield tag="001">BV040587312</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20130826 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">121123s2013 ad|| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780123970350</subfield><subfield code="9">978-0-12-397035-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)820421513</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV040587312</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-1050</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UQ 8420</subfield><subfield code="0">(DE-625)146597:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZM 3200</subfield><subfield code="0">(DE-625)157022:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZM 7020</subfield><subfield code="0">(DE-625)157098:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Aboudi, Jacob</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Micromechanics of composite materials</subfield><subfield code="b">a generalized multiscale analysis approach</subfield><subfield code="c">Jacob Aboudi ; Steven M. Arnold ; Brett A. Bednarcyk</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Amsterdam [u.a.]</subfield><subfield code="b">Elsevier, Butterworth-Heinemann</subfield><subfield code="c">2013</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXII, 984 S., [12 Bl.]</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Micromechanics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Verbundwerkstoff</subfield><subfield code="0">(DE-588)4062670-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mikromechanik</subfield><subfield code="0">(DE-588)4205811-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Verbundwerkstoff</subfield><subfield code="0">(DE-588)4062670-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Mikromechanik</subfield><subfield code="0">(DE-588)4205811-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Arnold, Steven M.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bednarcyk, Brett A.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=025415337&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=025415337&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Klappentext</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-025415337</subfield></datafield></record></collection> |
id | DE-604.BV040587312 |
illustrated | Illustrated |
indexdate | 2024-07-10T00:26:44Z |
institution | BVB |
isbn | 9780123970350 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-025415337 |
oclc_num | 820421513 |
open_access_boolean | |
owner | DE-703 DE-1050 DE-83 |
owner_facet | DE-703 DE-1050 DE-83 |
physical | XXII, 984 S., [12 Bl.] Ill., graph. Darst. |
publishDate | 2013 |
publishDateSearch | 2013 |
publishDateSort | 2013 |
publisher | Elsevier, Butterworth-Heinemann |
record_format | marc |
spelling | Aboudi, Jacob Verfasser aut Micromechanics of composite materials a generalized multiscale analysis approach Jacob Aboudi ; Steven M. Arnold ; Brett A. Bednarcyk 1. ed. Amsterdam [u.a.] Elsevier, Butterworth-Heinemann 2013 XXII, 984 S., [12 Bl.] Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Includes bibliographical references and index Micromechanics Verbundwerkstoff (DE-588)4062670-2 gnd rswk-swf Mikromechanik (DE-588)4205811-9 gnd rswk-swf Verbundwerkstoff (DE-588)4062670-2 s Mikromechanik (DE-588)4205811-9 s DE-604 Arnold, Steven M. Verfasser aut Bednarcyk, Brett A. Verfasser aut Digitalisierung UB Bayreuth application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=025415337&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis Digitalisierung UB Bayreuth application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=025415337&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA Klappentext |
spellingShingle | Aboudi, Jacob Arnold, Steven M. Bednarcyk, Brett A. Micromechanics of composite materials a generalized multiscale analysis approach Micromechanics Verbundwerkstoff (DE-588)4062670-2 gnd Mikromechanik (DE-588)4205811-9 gnd |
subject_GND | (DE-588)4062670-2 (DE-588)4205811-9 |
title | Micromechanics of composite materials a generalized multiscale analysis approach |
title_auth | Micromechanics of composite materials a generalized multiscale analysis approach |
title_exact_search | Micromechanics of composite materials a generalized multiscale analysis approach |
title_full | Micromechanics of composite materials a generalized multiscale analysis approach Jacob Aboudi ; Steven M. Arnold ; Brett A. Bednarcyk |
title_fullStr | Micromechanics of composite materials a generalized multiscale analysis approach Jacob Aboudi ; Steven M. Arnold ; Brett A. Bednarcyk |
title_full_unstemmed | Micromechanics of composite materials a generalized multiscale analysis approach Jacob Aboudi ; Steven M. Arnold ; Brett A. Bednarcyk |
title_short | Micromechanics of composite materials |
title_sort | micromechanics of composite materials a generalized multiscale analysis approach |
title_sub | a generalized multiscale analysis approach |
topic | Micromechanics Verbundwerkstoff (DE-588)4062670-2 gnd Mikromechanik (DE-588)4205811-9 gnd |
topic_facet | Micromechanics Verbundwerkstoff Mikromechanik |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=025415337&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=025415337&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT aboudijacob micromechanicsofcompositematerialsageneralizedmultiscaleanalysisapproach AT arnoldstevenm micromechanicsofcompositematerialsageneralizedmultiscaleanalysisapproach AT bednarcykbretta micromechanicsofcompositematerialsageneralizedmultiscaleanalysisapproach |