The Cauchy-Schwarz master class: an introduction to the art of mathematical inequalities
Using the Cauchy-Schwarz inequality as the initial guide, this text explains the concepts of mathematical inequalities by presenting a sequence of problems as they might have been discovered, the solutions to which can either be found with one of history's great mathematicians or by the reader...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2010
|
Ausgabe: | 7. print |
Schlagworte: | |
Zusammenfassung: | Using the Cauchy-Schwarz inequality as the initial guide, this text explains the concepts of mathematical inequalities by presenting a sequence of problems as they might have been discovered, the solutions to which can either be found with one of history's great mathematicians or by the reader themselves |
Beschreibung: | Includes bibliographical references and index 1. Starting with Cauchy -- 2. The AM-GM inequality -- 3. Lagrange's identity and Minkowski's conjecture -- 4. On geometry and sums of squares -- 5. Consequences of order -- 6. Convexity--the third pillar -- 7. Integral intermezzo -- 8. The ladder of power means -- 9. Hölder's inequality -- 10. Hilbert's inequality and compensating difficulties -- 11. Hardy's inequality and the flop -- 12. Symmetric sums -- 13. Majorization and Schur convexity -- 14. Cancellation and aggregation |
Beschreibung: | X, 306 S Ill., graph. Darst. 24 cm |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV040553120 | ||
003 | DE-604 | ||
005 | 20160331 | ||
007 | t | ||
008 | 121120s2010 ad|| |||| 00||| eng d | ||
020 | |z 9780521837750 |9 978-0-521-83775-0 | ||
020 | |z 9780521546775 |9 978-0-521-54677-5 | ||
035 | |a (OCoLC)820417725 | ||
035 | |a (DE-599)BVBBV040553120 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-19 |a DE-20 |a DE-384 | ||
084 | |a SK 490 |0 (DE-625)143242: |2 rvk | ||
100 | 1 | |a Steele, John Michael |d 1949- |e Verfasser |0 (DE-588)122585534 |4 aut | |
245 | 1 | 0 | |a The Cauchy-Schwarz master class |b an introduction to the art of mathematical inequalities |c J. Michael Steele |
250 | |a 7. print | ||
264 | 1 | |a Cambridge |b Cambridge University Press |c 2010 | |
300 | |a X, 306 S |b Ill., graph. Darst. |c 24 cm | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
500 | |a Includes bibliographical references and index | ||
500 | |a 1. Starting with Cauchy -- 2. The AM-GM inequality -- 3. Lagrange's identity and Minkowski's conjecture -- 4. On geometry and sums of squares -- 5. Consequences of order -- 6. Convexity--the third pillar -- 7. Integral intermezzo -- 8. The ladder of power means -- 9. Hölder's inequality -- 10. Hilbert's inequality and compensating difficulties -- 11. Hardy's inequality and the flop -- 12. Symmetric sums -- 13. Majorization and Schur convexity -- 14. Cancellation and aggregation | ||
520 | |a Using the Cauchy-Schwarz inequality as the initial guide, this text explains the concepts of mathematical inequalities by presenting a sequence of problems as they might have been discovered, the solutions to which can either be found with one of history's great mathematicians or by the reader themselves | ||
650 | 4 | |a Inequalities (Mathematics) | |
650 | 0 | 7 | |a Ungleichung |0 (DE-588)4139098-2 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Ungleichung |0 (DE-588)4139098-2 |D s |
689 | 0 | |5 DE-604 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-025398864 |
Datensatz im Suchindex
_version_ | 1804149647468396544 |
---|---|
any_adam_object | |
author | Steele, John Michael 1949- |
author_GND | (DE-588)122585534 |
author_facet | Steele, John Michael 1949- |
author_role | aut |
author_sort | Steele, John Michael 1949- |
author_variant | j m s jm jms |
building | Verbundindex |
bvnumber | BV040553120 |
classification_rvk | SK 490 |
ctrlnum | (OCoLC)820417725 (DE-599)BVBBV040553120 |
discipline | Mathematik |
edition | 7. print |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02023nam a2200373 c 4500</leader><controlfield tag="001">BV040553120</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20160331 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">121120s2010 ad|| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780521837750</subfield><subfield code="9">978-0-521-83775-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780521546775</subfield><subfield code="9">978-0-521-54677-5</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)820417725</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV040553120</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-19</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-384</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 490</subfield><subfield code="0">(DE-625)143242:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Steele, John Michael</subfield><subfield code="d">1949-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)122585534</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The Cauchy-Schwarz master class</subfield><subfield code="b">an introduction to the art of mathematical inequalities</subfield><subfield code="c">J. Michael Steele</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">7. print</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2010</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">X, 306 S</subfield><subfield code="b">Ill., graph. Darst.</subfield><subfield code="c">24 cm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">1. Starting with Cauchy -- 2. The AM-GM inequality -- 3. Lagrange's identity and Minkowski's conjecture -- 4. On geometry and sums of squares -- 5. Consequences of order -- 6. Convexity--the third pillar -- 7. Integral intermezzo -- 8. The ladder of power means -- 9. Hölder's inequality -- 10. Hilbert's inequality and compensating difficulties -- 11. Hardy's inequality and the flop -- 12. Symmetric sums -- 13. Majorization and Schur convexity -- 14. Cancellation and aggregation</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Using the Cauchy-Schwarz inequality as the initial guide, this text explains the concepts of mathematical inequalities by presenting a sequence of problems as they might have been discovered, the solutions to which can either be found with one of history's great mathematicians or by the reader themselves</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Inequalities (Mathematics)</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Ungleichung</subfield><subfield code="0">(DE-588)4139098-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Ungleichung</subfield><subfield code="0">(DE-588)4139098-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-025398864</subfield></datafield></record></collection> |
id | DE-604.BV040553120 |
illustrated | Illustrated |
indexdate | 2024-07-10T00:26:21Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-025398864 |
oclc_num | 820417725 |
open_access_boolean | |
owner | DE-19 DE-BY-UBM DE-20 DE-384 |
owner_facet | DE-19 DE-BY-UBM DE-20 DE-384 |
physical | X, 306 S Ill., graph. Darst. 24 cm |
publishDate | 2010 |
publishDateSearch | 2010 |
publishDateSort | 2010 |
publisher | Cambridge University Press |
record_format | marc |
spelling | Steele, John Michael 1949- Verfasser (DE-588)122585534 aut The Cauchy-Schwarz master class an introduction to the art of mathematical inequalities J. Michael Steele 7. print Cambridge Cambridge University Press 2010 X, 306 S Ill., graph. Darst. 24 cm txt rdacontent n rdamedia nc rdacarrier Includes bibliographical references and index 1. Starting with Cauchy -- 2. The AM-GM inequality -- 3. Lagrange's identity and Minkowski's conjecture -- 4. On geometry and sums of squares -- 5. Consequences of order -- 6. Convexity--the third pillar -- 7. Integral intermezzo -- 8. The ladder of power means -- 9. Hölder's inequality -- 10. Hilbert's inequality and compensating difficulties -- 11. Hardy's inequality and the flop -- 12. Symmetric sums -- 13. Majorization and Schur convexity -- 14. Cancellation and aggregation Using the Cauchy-Schwarz inequality as the initial guide, this text explains the concepts of mathematical inequalities by presenting a sequence of problems as they might have been discovered, the solutions to which can either be found with one of history's great mathematicians or by the reader themselves Inequalities (Mathematics) Ungleichung (DE-588)4139098-2 gnd rswk-swf Ungleichung (DE-588)4139098-2 s DE-604 |
spellingShingle | Steele, John Michael 1949- The Cauchy-Schwarz master class an introduction to the art of mathematical inequalities Inequalities (Mathematics) Ungleichung (DE-588)4139098-2 gnd |
subject_GND | (DE-588)4139098-2 |
title | The Cauchy-Schwarz master class an introduction to the art of mathematical inequalities |
title_auth | The Cauchy-Schwarz master class an introduction to the art of mathematical inequalities |
title_exact_search | The Cauchy-Schwarz master class an introduction to the art of mathematical inequalities |
title_full | The Cauchy-Schwarz master class an introduction to the art of mathematical inequalities J. Michael Steele |
title_fullStr | The Cauchy-Schwarz master class an introduction to the art of mathematical inequalities J. Michael Steele |
title_full_unstemmed | The Cauchy-Schwarz master class an introduction to the art of mathematical inequalities J. Michael Steele |
title_short | The Cauchy-Schwarz master class |
title_sort | the cauchy schwarz master class an introduction to the art of mathematical inequalities |
title_sub | an introduction to the art of mathematical inequalities |
topic | Inequalities (Mathematics) Ungleichung (DE-588)4139098-2 gnd |
topic_facet | Inequalities (Mathematics) Ungleichung |
work_keys_str_mv | AT steelejohnmichael thecauchyschwarzmasterclassanintroductiontotheartofmathematicalinequalities |