Group theory for high energy physicists:
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Boca Raton [u.a.]
Taylor & Francis
2013
|
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XI, 218 S. graph. Darst. |
ISBN: | 9781466510630 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV040545792 | ||
003 | DE-604 | ||
005 | 20130521 | ||
007 | t | ||
008 | 121116s2013 d||| |||| 00||| eng d | ||
020 | |a 9781466510630 |c (hbk.) |9 978-1-4665-1063-0 | ||
035 | |a (OCoLC)820399186 | ||
035 | |a (DE-599)HBZHT017391564 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-703 | ||
084 | |a UO 1500 |0 (DE-625)146200: |2 rvk | ||
100 | 1 | |a Saleem, Mohammad |d 1934- |e Verfasser |0 (DE-588)124082459 |4 aut | |
245 | 1 | 0 | |a Group theory for high energy physicists |c Mohammad Saleem ; Muhammad Rafique |
264 | 1 | |a Boca Raton [u.a.] |b Taylor & Francis |c 2013 | |
300 | |a XI, 218 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
700 | 1 | |a Rafique, Muhammad |e Verfasser |4 aut | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=025391615&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-025391615 |
Datensatz im Suchindex
_version_ | 1804149637416747008 |
---|---|
adam_text | Titel: Group theory for high energy physicists
Autor: Saleem, Mohammad
Jahr: 2013
Contents
Preface......................................................................................................................ix
About the Author...................................................................................................xi
1 Elements of Group Theory...............:...........................................................1
1.1 Definition of a Group............................................................................1
1.2 Some Characteristics of Group Elements..........................................4
1.3 Permutation Groups..............................................................................6
1.4 Multiplication Table............................................................................10
1.5 Subgroups............................................................................................10
1.6 Power of an Element of a Group.......................................................13
1.7 Cyclic Groups.......................................................................................14
1.8 Cosets....................................................................................................16
1.9 Conjugate Elements and Conjugate Classes....................................17
1.10 Conjugate Subgroups..........................................................................17
1.11 Normal Subgroups..............................................................................18
1.12 Center of a Group................................................................................18
1.13 Factor Group........................................................................................19
1.14 Mapping...............................................................................................20
1.15 Homomorphism..................................................................................22
1.16 Kernel....................................................................................................24
1.17 Isomorphism........................................................................................25
1.18 Direct Product of Groups...................................................................27
1.19 Direct Product of Subgroups.............................................................29
2 Group Representations................................................................................31
2.1 Linear Vector Spaces...........................................................................31
2.2 Linearly Independent Vectors...........................................................33
2.3 Basis Vectors........................................................................................33
2.4 Operators..............................................................................................34
2.5 Unitary and Hilbert Vector Spaces...................................................35
2.6 Matrix Representative of a Linear Operator...................................36
2.7 Change of Basis and Matrix Representative of a Linear
Operator................................................................................................40
2.8 Group Representations.......................................................................44
2.9 Equivalent and Unitary Representations........................................47
2.10 Reducible and Irreducible Representations....................................48
2.11 Complex Conjugate and Adjoint Representations.........................49
2.12 Construction of Representations by Addition................................49
2.13 Analysis of Representations..............................................................51
2.14 Irreducible Invariant Subspace.........................................................52
2.15 Matrix Representations and Invariant Subspaces..........................52
2.16 Product Representations....................................................................57
3 Continuous Groups......................................................................................61
3.1 Definition of a Continuous Group....................................................61
3.2 Groups of Linear Transformations...................................................62
3.3 Order of a Group of Transformations..............................................69
3.4 Lie Groups............................................................................................72
3.5 Generators of Lie Groups...................................................................75
3.6 Real Orthogonal Group in Two Dimensions: 0(2).........................84
3.7 Generators of SU(2).............................................................................91
3.8 Generators of SU(3).............................................................................95
3.9 Generators and Parameterization of a Group.................................98
3.10 Matrix Representatives of Generators..............................................99
3.11 Structure Constants..........................................................................101
3.12 Rank of a Lie Group..........................................................................103
3.13 Lie Algebras.......................................................................................104
3.14 Commutation Relations between the Generators of a
Semisimple Lie Group......................................................................105
3.15 Properties of the Roots.....................................................................108
3.16 Structure Constants Na|3...................................................................Ill
3.17 Classification of Simple Groups......................................................112
3.18 Roots of SU(2).....................................................................................114
3.19 Roots of SU(3).....................................................................................115
3.20 Numerical Values of the Structure Constants of SU(3)................122
3.21 Weights of a Representation............................................................122
3.22 Computation of the Highest Weight of Any Irreducible
Representation of SU(3)....................................................................127
3.23 Dimension of any Irreducible Representation of SU(N).............131
3.24 Computation of the Weights of Any Irreducible
Representation of SU(3)....................................................................133
3.25 Weights of Irreducible Representation D8(l,l) of SU(3)................135
3.26 Weight Diagrams..............................................................................138
3.27 Decomposition of a Product of Two Irreducible
Representations.................................................................................139
3.27.1 First Method.........................................................................139
3.27.2 Second Method.....................................................................141
4 Symmetry, Lie Groups, and Physics.......................................................147
4.1 Symmetry...........................................................................................147
4.1.1 Rotational Symmetry..........................................................147
4.1.2 Higher and Lower Symmetries.........................................151
4.1.3 Reflection/Inversion Symmetry........................................151
4.1.4 Concept of Parity..................................................................153
4.1.5 Multiple Symmetries...........................................................155
4.1.6 Combination of Symmetry Operations............................155
4.1.7 Translational Symmetry in Space......................................156
4.1.8 Time-Reversal Symmetry...................................................157
4.1.9 Charge Conjugation.............................................................159
4.1.10 Symmetry Groups and Physics..........................................162
4.2 Casimir Operators.............................................................................165
4.3 Symmetry Group and Unitary Symmetry....................................166
4.4 Symmetry and Physics.....................................................................166
4.5 Group Theory and Elementary Particles.......................................170
Reference.......................................................................................................190
Appendix A.........................................................................................................191
Appendix B..........................................................................................................195
Appendix C.........................................................................................................199
Appendix D.........................................................................................................203
Index.....................................................................................................................207
|
any_adam_object | 1 |
author | Saleem, Mohammad 1934- Rafique, Muhammad |
author_GND | (DE-588)124082459 |
author_facet | Saleem, Mohammad 1934- Rafique, Muhammad |
author_role | aut aut |
author_sort | Saleem, Mohammad 1934- |
author_variant | m s ms m r mr |
building | Verbundindex |
bvnumber | BV040545792 |
classification_rvk | UO 1500 |
ctrlnum | (OCoLC)820399186 (DE-599)HBZHT017391564 |
discipline | Physik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01124nam a2200289 c 4500</leader><controlfield tag="001">BV040545792</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20130521 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">121116s2013 d||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781466510630</subfield><subfield code="c">(hbk.)</subfield><subfield code="9">978-1-4665-1063-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)820399186</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)HBZHT017391564</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UO 1500</subfield><subfield code="0">(DE-625)146200:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Saleem, Mohammad</subfield><subfield code="d">1934-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)124082459</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Group theory for high energy physicists</subfield><subfield code="c">Mohammad Saleem ; Muhammad Rafique</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boca Raton [u.a.]</subfield><subfield code="b">Taylor & Francis</subfield><subfield code="c">2013</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XI, 218 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rafique, Muhammad</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=025391615&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-025391615</subfield></datafield></record></collection> |
id | DE-604.BV040545792 |
illustrated | Illustrated |
indexdate | 2024-07-10T00:26:12Z |
institution | BVB |
isbn | 9781466510630 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-025391615 |
oclc_num | 820399186 |
open_access_boolean | |
owner | DE-703 |
owner_facet | DE-703 |
physical | XI, 218 S. graph. Darst. |
publishDate | 2013 |
publishDateSearch | 2013 |
publishDateSort | 2013 |
publisher | Taylor & Francis |
record_format | marc |
spelling | Saleem, Mohammad 1934- Verfasser (DE-588)124082459 aut Group theory for high energy physicists Mohammad Saleem ; Muhammad Rafique Boca Raton [u.a.] Taylor & Francis 2013 XI, 218 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Rafique, Muhammad Verfasser aut HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=025391615&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Saleem, Mohammad 1934- Rafique, Muhammad Group theory for high energy physicists |
title | Group theory for high energy physicists |
title_auth | Group theory for high energy physicists |
title_exact_search | Group theory for high energy physicists |
title_full | Group theory for high energy physicists Mohammad Saleem ; Muhammad Rafique |
title_fullStr | Group theory for high energy physicists Mohammad Saleem ; Muhammad Rafique |
title_full_unstemmed | Group theory for high energy physicists Mohammad Saleem ; Muhammad Rafique |
title_short | Group theory for high energy physicists |
title_sort | group theory for high energy physicists |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=025391615&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT saleemmohammad grouptheoryforhighenergyphysicists AT rafiquemuhammad grouptheoryforhighenergyphysicists |