Instabilities of flows and transition to turbulence:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Boca Raton, Fla. [u.a.]
Taylor & Francis
2012
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XXXII, 478 S. Ill., graph. Darst. |
ISBN: | 9781439879443 1439879443 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV040541981 | ||
003 | DE-604 | ||
005 | 20121212 | ||
007 | t | ||
008 | 121114s2012 ad|| |||| 00||| eng d | ||
020 | |a 9781439879443 |9 978-1-4398-7944-3 | ||
020 | |a 1439879443 |9 1-4398-7944-3 | ||
035 | |a (OCoLC)918452214 | ||
035 | |a (DE-599)BVBBV040541981 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-634 | ||
084 | |a UF 4300 |0 (DE-625)145584: |2 rvk | ||
100 | 1 | |a Sengupta, Tapan K. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Instabilities of flows and transition to turbulence |c Tapan K. Sengupta |
264 | 1 | |a Boca Raton, Fla. [u.a.] |b Taylor & Francis |c 2012 | |
300 | |a XXXII, 478 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 4 | |a Turbulence | |
650 | 4 | |a Transition flow | |
650 | 4 | |a Stability | |
650 | 7 | |a SCIENCE / Physics |2 bisacsh | |
650 | 7 | |a TECHNOLOGY & ENGINEERING / Mechanical |2 bisacsh | |
650 | 0 | 7 | |a Umschlag |g Strömungsmechanik |0 (DE-588)4249988-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Turbulente Strömung |0 (DE-588)4117265-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Turbulente Strömung |0 (DE-588)4117265-6 |D s |
689 | 0 | 1 | |a Umschlag |g Strömungsmechanik |0 (DE-588)4249988-4 |D s |
689 | 0 | |5 DE-604 | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=025387863&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-025387863 |
Datensatz im Suchindex
_version_ | 1804149633423769600 |
---|---|
adam_text | Titel: Instabilities of flows and transition to turbulence
Autor: Sengupta, Tapan Kumar
Jahr: 2012
Contents
Symbol Description ix
List of Figures xv
List of Tables xxvii
Preface xxix
1 Introduction to Instability and Transition 1
1.1 Introduction ......................................................................1
1.2 What Is Instability?..............................................................4
1.3 Temporal and Spatial Instability................................................4
1.4 Some Instability Mechanisms....................................................5
1.4.1 Dynamic Stability of Still Atmosphere..................................5
1.4.2 Kelvin-Helmholtz Instability............................................7
2 Computing Transitional and Turbulent Flows 11
2.1 Fluid Dynamical Equations......................................................11
2.1.1 Equation of Continuity ..................................................12
2.1.2 Momentum Conservation Equation......................................12
2.1.3 Energy Conservation Equation..........................................14
2.1.4 Alternate Forms of the Energy Equation................................15
2.1.5 Equations of Motion in Terms of Derived Variables....................15
2.2 Some Equilibrium Solutions of the Basic Equation............................16
2.2.1 Couette Flow between Parallel Plates..................................18
2.2.2 Flow between Concentric Rotating Cylinders..........................19
2.2.3 Couette Flow between Parallel Plates, Driven by Pressure............21
2.2.4 Steady Stagnation Point Flow............................................24
2.2.5 Flow Past a Rotating Disc................................................26
2.3 Boundary Layer Theory..........................................................30
2.4 Control Volume Analysis of Boundary Layers..................................35
2.4.1 Displacement Thickness..................................................36
2.4.2 Momentum Thickness....................................................36
2.4.3 Separation of a Steady Boundary Layer................................37
2.4.3.1 Accelerated Flows (dp/dx 0)................................38
2.4.3.2 Retarded Flow (dp/dx 0)....................................38
2.5 Numerical Solution of the Thin Shear Layer (TSL) Equation................40
2.5.1 Falkner-Skan Similarity Profile..........................................43
2.5.2 Separation Criterion for Wedge Flow....................................44
2.5.3 Blasius Profile............................................................44
2.5.4 Hiemenz or Stagnation Point Flow......................................44
2.6 Laminar Mixing Layer............................................................44
iii
iv
2.7 Plane Laminar Jet................................................................46
2.8 Issues of Computing Space-Time Dependent Flows ..........................48
2.8.1 Waves — Building Blocks of a Disturbance Field......................49
2.8.2 Plane Waves ..............................................................50
2.9 Wave Interaction: Group Velocity and Energy Flux ..........................51
2.9.1 Physical and Computational Implications of Group Velocity..........52
2.9.2 Wave Packets and Their Propagation ..................................53
2.10 Issues of Space-Time Scale Resolution of Flows ..............................54
2.10.1 Spatial Scales in Turbulent Flows........................................54
2.10.2 Two- and Three-Dimensional DNS......................................55
2.11 Temporal Scales in Turbulent Flows............................................57
2.12 Computing Time-Averaged and Unsteady Flows ..............................59
2.13 Computing Methods for Unsteady Flows: Dispersion Relation Preserving
(DRP) Methods ..................................................................61
2.13.1 Spectral or Numerical Amplification Factor............................62
2.13.2 Quantification of Dispersion Error......................................65
2.14 DRP Schemes: Parameter Ranges for Creating q-Waves......................68
3 Instability and Transition in Flows 75
3.1 Introduction ......................................................................75
3.2 Parallel Flow Approximation and Inviscid Instability Theorems ............76
3.2.1 Inviscid Instability Mechanism..........................................78
3.3 Viscous Instability of Parallel Flows............................................79
3.3.1 Eigenvalue Formulation for Instability of Parallel Flows..............80
3.3.2 Temporal and Spatial Amplification of Disturbances..................83
3.3.2.1 Temporal Amplification Theory..............................83
3.3.2.2 Spatial Amplification Theory..................................83
3.3.2.3 Relationship between Temporal and Spatial Theories ... 84
3.4 Properties of the Orr-Sommerfeld Equation and Boundary Conditions ... 85
3.4.1 Compound Matrix Method..............................................87
3.5 Instability Analysis from the Solution of the Orr-Sommerfeld Equation . . 91
3.5.1 Local and Total Amplification of Disturbances........................95
3.5.2 Effects of the Mean Flow Pressure Gradient............................97
3.5.3 Transition Prediction Based on Stability Calculation..................102
3.5.4 Effects of Free Stream Turbulence ......................................103
3.6 Receptivity Analysis of the Shear Layer........................................106
3.6.1 Receptivity Mechanism by a Linearized Approach: Connection
to Stability Theory........................................................107
3.6.1.1 A Brief Review of Laplace-Fourier Transforms..............107
3.6.1.2 Fourier and Laplace Transforms..............................108
3.6.1.3 Inversion Formula for Laplace Transforms....................110
3.6.1.4 A Short Tutorial on Fourier Integral and Transforms .... 112
3.6.1.5 Some Useful Laplace-Fourier Transforms....................115
3.6.2 Receptivity to Wall Excitation and Impulse Response................118
3.6.2.1 Near-Field Response Created by Localized Excitation . . . 120
3.6.2.2 Outer Solution..................................................122
3.6.2.3 Inner Solution..................................................122
3.6.3 Vibrating Ribbon at the Wall............................................127
3.6.4 Receptivity to Free Stream Excitation..................................130
3.6.5 General Excitation and Upstream Propagating Modes................132
3.6.6 Low Frequency Free Stream Excitation and the Klebanoff Mode . . 138
V
3.7 Direct Simulation of Receptivity to Free Stream Excitation..................140
3.7.1 Coupling between the Wall and Free Stream Modes ..................144
3.7.2 Receptivity to a Train of Convected Vortices in the Free Stream . . 147
3.7.3 Further Explanation of Free Stream Periodic Excitation..............151
3.8 Nonparallel and Nonlinear Effects on Instability and Receptivity............155
3.8.1 Time Varying Receptivity Problem vis-a-vis the Signal Problem . . 158
3.8.2 Evidence of Nonparallel and Nonlinear Effects ........................159
3.8.3 Limitations of Linearized Nonparallel Theories........................166
4 Bypass Transition: Theory, Computations, and Experiments 171
4.1 Introduction ......................................................................171
4.2 Transition via Growing Waves and Bypass Transition ........................177
4.3 Visualization Study of Vortex-Induced Instability as Bypass Transition . . 179
4.4 Computations of Vortex-Induced Instability as a Precursor to Bypass
Transition ........................................................................189
4.5 Instability Mechanism in Vortex-Induced Instability ..........................192
4.6 Instability at the Attachment Line of Swept Wings ..........................195
5 Spatio-Temporal Wave Front and Transition 201
5.1 Introduction ......................................................................201
5.2 Transient Energy Growth........................................................205
5.3 Bromwich Contour Integral Method and Energy-Based Receptivity Analysis 206
5.4 Spatio-Temporal Wave Front Obtained by the Bromwich Contour Integral
Method ............................................................................207
5.5 Nonlinear Receptivity Analysis: Transition by the Spatio-Temporal Front and
Bypass Route ....................................................................217
5.5.1 Governing Equations and Boundary Condition........................219
5.5.2 Nonlinear Receptivity to Vortical Wall Excitation ....................223
5.5.3 Low Amplitude, Moderate FVequency Excitation......................226
5.5.4 High Amplitude Cases and Spot Regeneration Mechanism............229
5.5.5 Low Frequency Excitation Cases: Different Route of Transition . . . 234
5.6 Calculation of the N Factor ....................................................240
6 Nonlinear Effects: Multiple Hopf Bifurcations and Proper
Orthogonal Decomposition 245
6.1 Introduction ......................................................................245
6.2 Receptivity of Bluff-Body Flows to Background Disturbances................246
6.2.1 Numerical Simulation of Flow Past a Cylinder ........................251
6.3 Multiple Hopf Bifurcations, Landau Equation and Flow Instability..........256
6.4 Instability of Flow Past a Cylinder..............................................258
6.5 Role of FST on Critical Reynolds Number for a Cylinder ....................260
6.6 POD Modes and Nonlinear Stability............................................263
6.7 Landau-Stuart-Eckhaus Equation..............................................274
6.8 Universality of POD Modes......................................................276
7 Stability and Transition of Mixed Convection Flows 293
7.1 Introduction ......................................................................293
7.2 Governing Equations ............................................................297
7.3 Equilibrium Boundary Layer Flow Equations..................................298
7.3.1 Schneider s Similarity Solution..........................................299
7.4 Linear Spatial Stability Analysis of the Boundary Layer over a Heated Plate 305
vi
7.4.1 Fundamental Solutions of the OSE......................................310
7.4.2 Compound Matrix Method for the Sixth Order OSE.........312
7.4.3 Initial Conditions for an Auxiliary System of Equations.......315
7.4.4 Dispersion Relation ......................................................316
7.4.5 The Grid Search Method and the Newton-Raphson Technique for
Obtaining Eigenspectrum................................................316
7.4.6 Neutral Curve and Wavenumber Contours..............................319
7.4.7 Precision in Computing..................................................321
7.4.8 Results of the Linear Spatial Stability Theory..........................322
7.5 Nonlinear Receptivity of Mixed Convection Flow over a Heated Plate . . . 333
7.5.1 Boundary and Initial Conditions........................................336
7.5.2 Eigenfunction Structure and DNS of the Mixed Convection Problem 356
7.6 Concluding Remarks ............................................................358
8 Instabilities of Three-Dimensional Flows 361
8.1 Introduction ......................................................................361
8.2 Three-Dimensional Flows........................................................361
8.3 Infinite Swept Wing Flow........................................................364
8.4 Attachment Line Flow............................................................365
8.5 Boundary Layer Equations in the Transformed Plane ........................367
8.6 Simplification of Boundary Layer Equations in the Transformed Plane . . . 368
8.7 Instability of Three-Dimensional Flows ........................................369
8.7.1 Effects of Sweep Back and Cross Flow Instability......................370
8.8 Linear Stability Theory for Three-Dimensional Flows ........................372
8.8.1 Temporal Instability of Three-Dimensional Flows......................373
8.8.2 Spatial Instability of Three-Dimensional Flows........................374
8.9 Experimental Evidence of Instability on Swept Wings........................376
8.10 Infinite Swept Wing Boundary Layer ..........................................377
8.11 Stability of the Falkner-Skan-Cooke Profile....................................381
8.12 Stationary Waves over Swept Geometries ......................................384
8.13 Traveling Waves over Swept Geometries........................................386
8.14 Attachment Line Problem........................................................387
8.15 Empirical Transition Prediction Method for Three-Dimensional Flows . . . 389
8.15.1 Streamwise Transition Criterion ........................................389
8.15.2 Cross Flow Transition Criteria..........................................389
8.15.3 Leading Edge Contamination Criterion ................................390
9 Analysis and Design of Natural Laminar Flow Airfoils 393
9.1 Introduction ......................................................................393
9.2 Airfoil Nomenclature and Basic Aerodynamic Properties ....................394
9.3 Pressure Distribution and Pressure Recovery of Some Low Drag Airfoils . . 402
9.4 Flapping of Airfoils ..............................................................406
9.5 Effects of Roughness and Fixing Transition....................................407
9.6 Effects of Vortex Generator or Boundary Layer Re-Energizer ........409
9.7 Section Characteristics of Various Profiles......................................410
9.8 High Speed NLF Airfoils ........................................................412
9.9 Direct Simulation of Bypass Transitional Flow Past an Airfoil ..............420
vii
10 Epilogue 425
10.1 Introduction ................................... 425
10.2 Relevance of Two-Dimensional Turbulence ....................................426
10.3 Role of Formulation in the Numerical Solution in Two-Dimensional DNS . 427
10.4 Dynamical System Representation of Turbulent Flows........................429
10.5 Role of the Computational Domain ............................................431
10.5.1 Renewal Mechanism and Intermittent Nature of Turbulence..........433
10.6 Free and Forced Turbulence ....................................................437
11 Selected Problems 441
Bibliography 447
Index 473
|
any_adam_object | 1 |
author | Sengupta, Tapan K. |
author_facet | Sengupta, Tapan K. |
author_role | aut |
author_sort | Sengupta, Tapan K. |
author_variant | t k s tk tks |
building | Verbundindex |
bvnumber | BV040541981 |
classification_rvk | UF 4300 |
ctrlnum | (OCoLC)918452214 (DE-599)BVBBV040541981 |
discipline | Physik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01584nam a2200409 c 4500</leader><controlfield tag="001">BV040541981</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20121212 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">121114s2012 ad|| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781439879443</subfield><subfield code="9">978-1-4398-7944-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1439879443</subfield><subfield code="9">1-4398-7944-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)918452214</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV040541981</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-634</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UF 4300</subfield><subfield code="0">(DE-625)145584:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Sengupta, Tapan K.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Instabilities of flows and transition to turbulence</subfield><subfield code="c">Tapan K. Sengupta</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boca Raton, Fla. [u.a.]</subfield><subfield code="b">Taylor & Francis</subfield><subfield code="c">2012</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXXII, 478 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Turbulence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Transition flow</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stability</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SCIENCE / Physics</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">TECHNOLOGY & ENGINEERING / Mechanical</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Umschlag</subfield><subfield code="g">Strömungsmechanik</subfield><subfield code="0">(DE-588)4249988-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Turbulente Strömung</subfield><subfield code="0">(DE-588)4117265-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Turbulente Strömung</subfield><subfield code="0">(DE-588)4117265-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Umschlag</subfield><subfield code="g">Strömungsmechanik</subfield><subfield code="0">(DE-588)4249988-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=025387863&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-025387863</subfield></datafield></record></collection> |
id | DE-604.BV040541981 |
illustrated | Illustrated |
indexdate | 2024-07-10T00:26:08Z |
institution | BVB |
isbn | 9781439879443 1439879443 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-025387863 |
oclc_num | 918452214 |
open_access_boolean | |
owner | DE-634 |
owner_facet | DE-634 |
physical | XXXII, 478 S. Ill., graph. Darst. |
publishDate | 2012 |
publishDateSearch | 2012 |
publishDateSort | 2012 |
publisher | Taylor & Francis |
record_format | marc |
spelling | Sengupta, Tapan K. Verfasser aut Instabilities of flows and transition to turbulence Tapan K. Sengupta Boca Raton, Fla. [u.a.] Taylor & Francis 2012 XXXII, 478 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Turbulence Transition flow Stability SCIENCE / Physics bisacsh TECHNOLOGY & ENGINEERING / Mechanical bisacsh Umschlag Strömungsmechanik (DE-588)4249988-4 gnd rswk-swf Turbulente Strömung (DE-588)4117265-6 gnd rswk-swf Turbulente Strömung (DE-588)4117265-6 s Umschlag Strömungsmechanik (DE-588)4249988-4 s DE-604 HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=025387863&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Sengupta, Tapan K. Instabilities of flows and transition to turbulence Turbulence Transition flow Stability SCIENCE / Physics bisacsh TECHNOLOGY & ENGINEERING / Mechanical bisacsh Umschlag Strömungsmechanik (DE-588)4249988-4 gnd Turbulente Strömung (DE-588)4117265-6 gnd |
subject_GND | (DE-588)4249988-4 (DE-588)4117265-6 |
title | Instabilities of flows and transition to turbulence |
title_auth | Instabilities of flows and transition to turbulence |
title_exact_search | Instabilities of flows and transition to turbulence |
title_full | Instabilities of flows and transition to turbulence Tapan K. Sengupta |
title_fullStr | Instabilities of flows and transition to turbulence Tapan K. Sengupta |
title_full_unstemmed | Instabilities of flows and transition to turbulence Tapan K. Sengupta |
title_short | Instabilities of flows and transition to turbulence |
title_sort | instabilities of flows and transition to turbulence |
topic | Turbulence Transition flow Stability SCIENCE / Physics bisacsh TECHNOLOGY & ENGINEERING / Mechanical bisacsh Umschlag Strömungsmechanik (DE-588)4249988-4 gnd Turbulente Strömung (DE-588)4117265-6 gnd |
topic_facet | Turbulence Transition flow Stability SCIENCE / Physics TECHNOLOGY & ENGINEERING / Mechanical Umschlag Strömungsmechanik Turbulente Strömung |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=025387863&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT senguptatapank instabilitiesofflowsandtransitiontoturbulence |