Analysis, synthesis, and design of chemical processes:
Gespeichert in:
Format: | Buch |
---|---|
Sprache: | English |
Veröffentlicht: |
Upper Saddle River, NJ ; Munich [u.a.]
Pearson Education Intern.
2013
|
Ausgabe: | 4. ed., intern. ed. |
Schriftenreihe: | Prentice Hall international series in the physical and chemical engineering sciences
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XXXV, 965 S. Ill., graph. Darst. 1 CD-ROM (12 cm) |
ISBN: | 0132940299 9780132940290 |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV040461427 | ||
003 | DE-604 | ||
005 | 20121019 | ||
007 | t | ||
008 | 121009s2013 xxuad|| |||| 00||| eng d | ||
015 | |a GBA8B8369 |2 dnb | ||
020 | |a 0132940299 |c kart. |9 0-13-294029-9 | ||
020 | |a 9780132940290 |c kart. |9 978-0-13-294029-0 | ||
035 | |a (OCoLC)815946253 | ||
035 | |a (DE-599)BVBBV040461427 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
044 | |a xxu |c US | ||
049 | |a DE-703 |a DE-83 |a DE-91G | ||
050 | 0 | |a TP155.7 | |
082 | 0 | |a 660/.2812 | |
084 | |a VN 7000 |0 (DE-625)147598:253 |2 rvk | ||
084 | |a VN 7300 |0 (DE-625)147616:253 |2 rvk | ||
084 | |a CIT 300f |2 stub | ||
084 | |a CIT 050f |2 stub | ||
084 | |a CIT 009f |2 stub | ||
245 | 1 | 0 | |a Analysis, synthesis, and design of chemical processes |c Richard Turton ... |
250 | |a 4. ed., intern. ed. | ||
264 | 1 | |a Upper Saddle River, NJ ; Munich [u.a.] |b Pearson Education Intern. |c 2013 | |
300 | |a XXXV, 965 S. |b Ill., graph. Darst. |e 1 CD-ROM (12 cm) | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Prentice Hall international series in the physical and chemical engineering sciences | |
650 | 4 | |a Chemical processes | |
650 | 0 | 7 | |a Chemischer Prozess |0 (DE-588)4147636-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Chemische Verfahrenstechnik |0 (DE-588)4069941-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Prozessentwicklung |g Technik |0 (DE-588)4278925-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Chemischer Prozess |0 (DE-588)4147636-0 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Chemische Verfahrenstechnik |0 (DE-588)4069941-9 |D s |
689 | 1 | 1 | |a Prozessentwicklung |g Technik |0 (DE-588)4278925-4 |D s |
689 | 1 | |5 DE-604 | |
700 | 1 | |a Turton, Richard |e Sonstige |4 oth | |
856 | 4 | 2 | |m Digitalisierung UB Bayreuth |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=025308870&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-025308870 |
Datensatz im Suchindex
_version_ | 1804149526756327424 |
---|---|
adam_text | Contents
Material on the CD-ROM
xix
Preface
xxiii
About the Authors
xxvii
List of Nomenclature
xxix
SECTION I CONCEPTUALIZATION AND ANALYSIS OF CHEMICAL PROCESSES
1
Chapter
1
Diagrams for Understanding Chemical Processes
3
What You Will Learn
3
1.1
Block Flow Diagram (BFD)
5
2.2.2
Block Flow Process Diagram
5
1.1.2
Block Flow Plant Diagram
6
1.2
Process Flow Diagram (PFD)
8
1.2.1
Process Topology
9
1.2.2
Stream Information
12
1.2.3
Equipment
Inf
ormation
16
1.2.4
Combining Topology, Stream Data, and Control Strategy to
Give a PFD
18
1.3
Piping and Instrumentation Diagram (P&ID)
21
1.4
Additional Diagrams
26
1.5
Three-Dimensional Representation of a Process
27
1.6
The
3-D
Plant Model
35
1.7
Operator and
3-D
Immersive Training Simulators
37
1.7.2
Operator Training Simulators (OTS)
37
1.7.2 3-D
Immersive Training Simulators (ITS)
38
1.7.3
Linking the ITS with an OTS
40
1.8
Summary
43
What You Should Have Learned
43
References
44
Short Answer Questions
44
Problems
44
Chapter
2
The Structure and Synthesis of Process Flow Diagrams
47
What You Will Learn
47
2.1
Hierarchy of Process Design
47
Contents
2.2
Step
1—
Batch versus Continuous Process
48
2.3
Step
2—
The Input/Output Structure of the Process
52
2.3.1
Process Concept Diagram
52
2.3.2
The Input/Output Structure of the Process Flow Diagram
53
2.3.3
The Input/Output Structure and Other Features of the Generic Block
Flow Process Diagram
55
2.3.4
Other Considerations for the Input/Output Structure of the Process
Flowsheet
58
2.3.5
What Information Can Be Determined Using the Input/Output
Diagram
f
or a Process?
60
2.4
Step
3—
The Recycle Structure of the Process
62
2.4.1
Efficiency of Raw Material Usage
63
2.4.2
Identification and Definition of the Recycle Structure
of the Process
64
2.4.3
Other Issues Affecting the Recycle Structure That Lead to
Process Alternatives
68
2.5
Step
4—
General Structure of the Separation System
76
2.6
Step
5—
Heat-Exchanger Network or Process Energy
Recovery System
76
2.7
Information Required and Sources
76
2.8
Summary
76
What You Should Have Learned
78
References
78
Short Answer Questions
79
Problems
79
Chapter
3
Batch Processing
83
What You Will Learn
83
3.1
Design Calculations for Batch Processes
83
3.2
Gantt Charts and Scheduling
89
3.3
Nonoverlapping
Operations, Overlapping Operations,
and Cycle Times
90
3.4
Flowshop and
Jobshop
Plants
93
3.4.1
Flowshop Plants
93
3.4.2 Jobshop
Plants
95
3.5
Product and Intermediate Storage and Parallel Process Units
98
3.5.1
Product Storage for Single-Product Campaigns
98
3.5.2
Intermediate Storage
100
3.5.3
Parallel Process Units
102
3.6
Design of Equipment for Multiproduct Batch Processes
103
3.7
Summary
105
What You Should Have Learned
106
References
106
Short Answer Questions
106
Problems
106
Contents
vii
Chapter
4
Chemical Product Design
109
What You Will Learn
109
4.1
Strategies for Chemical Product Design
110
4.2
Needs 111
4.3
Ideas
113
4.4
Selection
114
4.5
Manufacture
116
4.6
Batch Processing
117
4.7
Economic Considerations
117
4.8
Summary
117
What You Should Have Learned
118
References
118
Chapter
5
Tracing Chemicals through the Process Flow Diagram
119
What You Will Learn
119
5.1
Guidelines and Tactics for Tracing Chemicals
119
5.2
Tracing Primary Paths Taken by Chemicals in a Chemical Process
120
5.3
Recycle and Bypass Streams
126
5.4
Tracing Nonreacting Chemicals
129
5.5
Limitations
129
5.6
Written Process Description
130
5.7
Summary
131
What You Should Have Learned
131
Problems
132
Chapter
6
Understanding Process Conditions
133
What You Will Learn
133
6.1
Conditions of Special Concern for the Operation of Separation
and Reactor Systems
134
6.1.1
Pressure
134
6.1.2
Temperature
135
6.2
Reasons for Operating at Conditions of Special Concern
136
6.3
Conditions of Special Concern for the Operation of Other Equipment
140
6.4
Analysis of Important Process Conditions
144
6.4.1
Evaluation of Reactor R-101
145
6.4.2
Evaluation of High-Pressure Phase Separator V-102
150
6.4.3
Evaluation of Large Temperature Driving Force in Exchanger
E-101
150
6.4.4
Evaluation of Exchanger E-102
150
6.4.5
Pressure Control Valve on Stream
8 151
6.4.6
Pressure Control Valve on Stream from V-102 to V-103
151
6.5
Summary
151
What You Should Have Learned
151
References
152
Short Answer Questions
152
Problems
152
viii Contents
SECTION
II
ENGINEERING
ECONOMIC
ANALYSIS OF CHEMICAL PROCESSES
155
Chapter
7
Estimation of Capital Costs
157
What You Will Learn
157
7.1
Classifications of Capital Cost Estimates
158
7.2
Estimation of Purchased Equipment Costs
161
7.2.1
Effect of Capacity on Purchased Equipment Cost
161
7.2.2
Effect of Time on Purchased Equipment Cost
165
7.3
Estimating the Total Capital Cost of a Plant
166
7.3.1
Lang Factor Technique
170
7.3.2
Module Costing Technique
171
7.3.3
Bare Module Cost for Equipment at Base Conditions
171
7.3.4
Bare Module Cost for Non-Base-Case Conditions
175
7.3.5
Combination of Pressure and
MOC
Information to Give the Bare
Module Factor, FBM, and Bare Module Cost, CBM
185
7.3.6
Algorithm for Calculating Bare Module Costs
185
7.3.7
Grassroots and Total Module Costs
187
7.3.8
A Computer Program (CAPCOSVfor Capital Cost Estimation Using
the Equipment Module Approach
190
7.4
Summary
192
What You Should Have Learned
192
References
192
Short Answer Questions
193
Problems
194
Chapter
8
Estimation of Manufacturing Costs
197
What You Will Learn
197
8.1
Factors Affecting the Cost of Manufacturing a Chemical Product
197
8.2
Cost of Operating Labor
202
8.3
Utility Costs
203
8.3.1
Background Information on Utilities
203
8.3.2
Calculation of Utility Costs
205
8.4
Raw Material Costs
217
8.5
Yearly Costs and Stream Factors
219
8.6
Estimating Utility Costs from the PFD
219
8.7
Cost of Treating Liquid and Solid Waste Streams
222
8.8
Evaluation of Cost of Manufacture for the Production of Benzene via
the Hydrodealkylation of Toluene
222
8.9
Summary
223
What You Should Have Learned
224
References
224
Short Answer Questions
224
Problems
225
Chapter
9
Engineering Economic Analysis
227
What You Will Learn
227
9.1
Investments and the Time Value of Money
228
9.2
Different Types of Interest
232
Contents ix
9.2.2 Simple
Interest
232
9.2.2
Compound
Interest
232
9.2.3
Interest
Rates Changing with Time
233
9.3
Time Basis for Compound Interest Calculations
234
9.3.1
Effective Annual Interest Rate
234
9.3.2
Continuously Compounded Interest
235
9.4
Cash Flow Diagrams
235
9.4.1
Discrete Cash Flow Diagram
236
9.4.2
Cumulative Cash Flow Diagram
238
9.5
Calculations from Cash Flow Diagrams
239
9.5.1
Annuities
—
A Uniform Series of Cash Transactions
240
9.5.2
Discount Factors
241
9.6
Inflation
244
9.7
Depreciation of Capital Investment
247
9.7.1
Fixed Capital, Working Capital, and Land
248
9.7.2
Different Types of Depreciation
248
9.7.3
Current Depreciation Method: Modified Accelerated Cost Recovery
System (MACRS)
252
9.8
Taxation, Cash Flow, and Profit
253
9.9
Summary
256
What You Should Have Learned
256
References
256
Short Answer Questions
257
Problems
257
Chapter
10
Profitability Analysis
261
What You Will Learn
261
10.1
A Typical Cash Flow Diagram for a New Project
261
10.2
Profitability Criteria for Project Evaluation
263
10.2.1
Nondiscounted Profitability Criteria
263
10.2.2
Discounted Profitability Criteria
267
10.3
Comparing Several Large Projects: Incremental Economic Analysis
271
10.4
Establishing Acceptable Returns from Investments: The Concept
of Risk
274
10.5
Evaluation of Equipment Alternatives
275
10.5.1
Equipment with the Same Expected Operating Lives
275
10.5.2
Equipment with Different Expected Operating Lives
276
10.6
Incremental Analysis for Retrofitting Facilities
281
20.6.3
Nondiscounted Methods for Incremental Analysis
281
10.6.2
Discounted Methods for Incremental Analysis
283
10.7
Evaluation of Risk in Evaluating Profitability
285
20.7.2
Forecasting Uncertainty in Chemical Processes
286
10.7.2
Quantifying Risk
190
10.8
Profit Margin Analysis
302
10.9
Summary
303
What You Should Have Learned
303
References
304
Short Answer Questions
304
Problems
304
Contents
SECTION
III SYNTHESIS AND OPTIMIZATION OF CHEMICAL PROCESSES
311
Chapter
11
Utilizing Experience-Based Principles to Confirm the Suitability
of a Process Design
315
What You Will Learn
315
11.1
The Role of Experience in the Design Process
316
11.1.1
Introduction to Technical Heuristics and Shortcut Methods
316
11.1.2
Maximizing the Benefits Obtained from Experience
317
11.2
Presentation of Tables of Technical Heuristics and Guidelines
319
11.3
Summary
322
What You Should Have Learned
340
References
340
Problems
340
Chapter
12
Synthesis of the PFD from the Generic BFD
341
What You Will Learn
341
12.1
Information Needs and Sources
342
12.1.1
Interactions with Other Engineers and Scientists
342
12.1.2
Reaction Kinetics Data
342
12.1.3
Physical Property Data
343
12.2
Reactor Section
344
12.3
Separator Section
346
12.3.1
General Guidelines for Choosing Separation Operations
346
12.3.2
Sequencing of Distillation Columns for Simple Distillation
348
12.3.3
Azeotropic Distillation
351
12.4
Reactor Feed Preparation and Separator Feed Preparation Sections
361
12.5
Recycle Section
362
12.6
Environmental Control Section
362
12.7
Major Process Control Loops
363
12.8
Flow Summary Table
363
12.9
Major Equipment Summary Table
364
12.10
Summary
364
What You Should Have Learned
364
References
365
Problems
366
Chapter
13
Synthesis of a Process Using a Simulator and Simulator
Troubleshooting
369
What You Will Learn
369
13.1
The Structure of a Process Simulator
370
13.2
Information Required to Complete a Process
Simulation: Input Data
373
13.2.1
Selection of Chemical Components
373
13.2.2
Selection of Physical Property Models
374
13.2.3
Selection and Input of Flowsheet Topology
376
13.2.4
Selection of Feed Stream Properties
377
13.2.5
Selection of Equipment Parameters
377
Contents xi
13.2.6
Selection of
Output Display
Options
384
13.2.7
Selection of Convergence Criteria and Running a Simulation
384
13.3
Handling Recycle Streams
385
13.4
Choosing Thermodynamic Models
387
23.4.1
Pure-Component Properties
388
13.4.2
Enthalpy
388
13.4.3
Phase Equilibria
389
13.4.4
Using Thermodynamic Models
396
13.5
Case Study: Toluene Hydrodealkylation Process
398
13.6
Electrolyte Systems Modeling
400
13.6.1
Fundamentals of Modeling Electrolyte Systems
400
13.6.2
Steps Needed to Build the Model of an Aqueous Electrolyte System
and the Estimation of Parameters
407
13.7
Solids Modeling
413
13.7.1
Physical Properties
413
13.7.2
Parameter Requirements for Solids Model
415
What You Should Have Learned
418
Appendix
13.1
Calculation of Excess Gibbs Energy for Electrolyte Systems
418
Appendix
13.2
Steps to Build a Model of a Distillation Column for an
Electrolyte System Using a Rate-Based Simulation with a Film
Model for Mass Transfer, the Parameters Required at Each
Stage, and Possible Sources of These Parameters
421
13.8
Summary
424
References
425
Short Answer Questions
428
Problems
428
Chapter
14
Process Optimization
435
What You Will Learn
435
14.1
Background Information on Optimization
435
14.1.1
Common Misconceptions
437
14.1.2
Estimating Problem Difficulty
439
14.1.3
Тор
-Down
and Bottom-Up Strategies
439
14.1.4
Communication of Optimization Results
440
14.2
Strategies
441
14.2.1
Base Case
441
14.2.2
Objective Functions
442
14.2.3
Analysis of the Base Costs
443
14.2.4
Identifying and Prioritizing Key Decision Variables
444
14.3
Topological Optimization
445
14.3.1
Introduction
445
14.3.2
Elimination of Unwanted Nonhazardous By-products
or Hazardous Waste Streams
446
14.3.3
Elimination and Rearrangement of Equipment
447
14.3.4
Alternative Separation Schemes and Reactor Configurations
450
14.4
Parametric Optimization
451
14.4.1
Single-Variable Optimization: A Case Study on T-201, the
DME
Separation Column
452
xii
Contents
14.4.2
Two-Variable Optimization: The Effect of Pressure and Reflux Ratio
on T-201, the
DME
Separation Column
454
14.4.3
Flowsheet Optimization Using Key Decision Variables
457
14.5
Lattice Search Techniques versus Response Surface Techniques
462
14.6
Process Flexibility and the Sensitivity of the Optimum
463
14.7
Optimization in Batch Systems
463
14.7.1
Problem of Scheduling Equipment
463
14.7.2
Problem of Optimum Cycle Time
468
14.8
Summary
471
What You Should Have Learned
471
References
471
Short Answer Questions
472
Problems
472
Chapter
15
Pinch Technology
479
What You Will Learn
479
15.1
Introduction
479
15.2
Heat Integration and Network Design
480
15.3
Composite Temperature-Enthalpy Diagram
494
15.4
Composite Enthalpy Curves for Systems without a Pinch
496
15.5
Using the Composite Enthalpy Curve to Estimate
Heat-Exchanger Surface Area
497
15.6
Effectiveness Factor (f) and the Number of Shells
501
15.7
Combining Costs to give the EAOC for the Network
506
15.8
Other Considerations
507
15.8.1
Materials of Construction and Operating Pressure Issues
508
15.8.2
Problems with Multiple Utilities
510
15.8.3
Handling Streams with Phase Changes
510
15.9
Heat-Exchanger Network Synthesis Analysis and Design (HENSAD)
Program
512
15.10
Mass-Exchange Networks
512
15.11
Summary
521
What You Should Have Learned
522
References
522
Short Answer Questions
523
Problems
523
Chapter
16
Advanced Topics Using Steady-State Simulators
529
What You Will Learn
529
16.1
Why the Need for Advanced Topics in Steady-State Simulation?
530
16.2
User-Added Models
530
26.2.1
Unit Operation Models
531
16.2.2
User Thermodynamic and Transport Models
533
16.2.3
User Kinetic Models
536
16.3
Solution Strategy for Steady-State Simulations
540
16.3.1
Sequential Modular (SM)
540
16.3.2
Equation-Oriented (EO)
554
16.3.3
Simultaneous Modular (SMod)
556
Contents xiii
16.4
Studies with the Steady-State Simulation
559
16.4.1
Sensitivity Studies
559
16.4.2
Optimization Studies
559
16.5
Estimation of Physical Property Parameters
564
16.6
Summary
567
What You Should Have Learned
568
References
568
Short Answer Questions
569
Problems
570
Chapter
17
Using Dynamic Simulators in Process Design
575
What You Will Learn
575
17.1
Why Is There a Need for Dynamic Simulation?
576
17.2
Setting Up a Dynamic Simulation
577
17.2.1
Step
1:
Topological Change in the Steady-State Simulation
577
17.2.2
Step
2:
Equipment Geometry and Size
581
17.2.3
Step
3:
Additional Dynamic Data/Dynamic Specification
582
17.3
Dynamic Simulation Solution Methods
592
17.3.1
Initialization
592
17.3.2
Solution of the DAE System
593
17
A Process Control
598
17.5
Summary
606
What You Should Have Learned
606
References
607
Short Answer Questions
607
Problems
608
Chapter
18
Regulation and Control of Chemical Processes with Applications Using
Commercial Software
613
What You Will Learn
613
18.1
A Simple Regulation Problem
614
18.2
The Characteristics of Regulating Valves
615
18.3
Regulating Flowrates and Pressures
618
18.4
The Measurement of Process Variables
621
18.5
Common Control Strategies Used in Chemical Processes
621
18.5.1
Feedback Control and Regulation
621
18.5.2
Feed-Forward Control and Regulation
623
18.5.3
Combination Feedback and Feed-Forward Control
625
18.5.4
Cascade Regulation
626
18.5.5
Ratio Control
627
18.5.6
Split-Range Control
629
18.6
Exchanging Heat and Work between Process and Utility Streams
632
28.6.1
Increasing the Pressure of a Process Stream and Regulating
Its Flowrate
632
18.6.2
Exchanging Heat between Process Streams and Utilities
634
18.6.3
Exchanging Heat between Process Streams
638
18.7
Logic Control
638
18.8
Advanced Process Control
641
XIV
Contents
644
18.8.1
Statistical Process Control
(SPC)
641
18.8.2
Model-Based Control
642
18.9
Case Studies
642
18.9.1
The Cumene Reactor, R-801
643
18.9.2
A Basic Control System for a Binary Distillation Column
18.9.3
A More Sophisticated Control System for a Binary
Distillation Column
647
18.10
Putting It All Together: The Operator Training Simulator (OTS)
648
18.11
Summary
649
What You Should Have Learned
649
References
650
Problems
650
SECTION IV ANALYSIS OF PROCESS PERFORMANCE
655
Chapter
19
Process Input/Output Models
657
What You Will Learn
657
19.1
Representation of Process Inputs and Outputs
658
19.2
Analysis of the Effect of Process Inputs on Process Outputs
A Process Example
662
Summary
663
What You Should Have Learned
664
Problems
664
661
19.3
19.4
Chapter
20
Tools for Evaluating Process Performance
665
What You Will Learn
665
20.1
Key Relationships
665
20.2
Thinking with Equations
666
20.2.1
GENI
667
20.2.2
Predicting Trends
667
20.3
Base-Case Ratios
668
20.4
Analysis of Systems Using Controlling Resistances
20.5
Graphical Representations
672
20.5.1
The Moody Diagram for Friction Factors
672
20.5.2
The System Curve for Frictional Losses
672
20.5.3
The T-Q Diagram for Heat Exchangers
674
20.6
Summary
676
What You Should Have Learned
677
References
677
Problems
677
Chapter
21
Performance Curves for Individual Unit Operations
679
What You Will Learn
679
21.1
Application to Heat Transfer
681
21.2
Application to Fluid Flow
686
21.2.1
Pump and System Curves
686
21.2.2
Regulating Flowrates
692
670
Contents
XV
21.2.3
Reciprocating
or Positive Displacement Pumps
21.2.4
Net Positive Suction Head
695
21.2.5
Compressors
699
21.3
Application to Separation Problems
700
21.3.1
Separations with Mass Separating Agents
700
21.3.2
Distillation
705
21.4
Summary
712
What You Should Have Learned
713
References
713
Short Answer Questions
713
Problems
715
695
Chapter
22
Performance of Multiple Unit Operations
721
What You Will Learn
721
22.1
Analysis of a Reactor with Heat Transfer
721
22.2
Performance of a Distillation Column
726
22.3
Performance of a Heating Loop
731
22.4
Performance of the Feed Section to a Process
737
22.5
Summary
740
What You Should Have Learned
741
References
741
Short Answer Questions
741
Problems
741
Chapter
23
Reactor Performance
751
What You Will Learn
751
23.1
Production of Desired Product
752
23.2
Reaction Kinetics and Thermodynamics
754
23.2.1
Reaction Kinetics
754
23.2.2
Thermodynamic Limitations
756
23.3
The Chemical Reactor
757
23.4
Heat Transfer in the Chemical Reactor
762
23.5
Reactor System Case Studies
765
23.5.1
Replacement of Catalytic Reactor in Benzene Process
23.5.2
Replacement of Cumene Catalyst
770
23.5.3
Increasing Acetone Production
775
23.6
Summary
778
What You Should Have Learned
779
References
779
Short Answer Questions
779
Problems
780
766
Chapter
24
Process Troubleshooting and Debottlenecking
783
What You Will Learn
783
24.1
Recommended Methodology
785
24.1.1
Elements of Problem-Solving Strategies
785
24.1.2
Application to Troubleshooting Problems
787
xvi
Contents
24.2
Troubleshooting Individual Units
789
24.2.1
Troubleshooting a Packed-Bed Absorber
789
24.2.2
Troubleshooting the Cumene Process Feed Section
793
24.3
Troubleshooting Multiple Units
795
24.3.1
Troubleshooting Off-Specification Acrylic Acid Product
795
24.3.2
Troubleshooting Steam Release in Cumene Reactor
797
24.4
A Process Troubleshooting Problem
800
24.5
Debottlenecking Problems
804
24.6
Summary
805
What You Should Have Learned
805
References
805
Problems
805
SECTION V THE IMPACT OF CHEMICAL ENGINEERING DESIGN ON SOCIETY
811
Chapter
25
Ethics and Professionalism
813
What You Will Learn
813
25.1
Ethics
814
25.1.1
Moral Autonomy
815
25.1.2
Rehearsal
815
25.1.3
Reflection in Action
816
25.1.4
Mobile Truth
817
25.1.5
Nonprofessional
Responsibilities
819
25.1.6
Duties and Obligations
820
25.1.7
Codes of Ethics
821
25.1.8
Whistle-Blowing
823
25.1.9
Ethical Dilemmas
828
25.1.10
Additional Ethics Heuristics
828
25.1.11
Other Resources
829
25.2
Professional Registration
832
25.2.1
Engineer-in-Traning
833
25.2.2
Registered Professional Engineer
836
25.3
Legal Liability
837
25.4
Business Codes of Conduct
838
25.5
Summary
839
What You Should Have Learned
839
References
840
Problems
840
Chapter
26
Health, Safety, and the Environment
843
What You Will Learn
843
26.1
Risk Assessment
844
26.1.1
Accident Statistics
844
26.1.2
Worst-Case Scenarios
845
26.1.3
The Role of the Chemical Engineer
846
26.2
Regulations and Agencies
846
26.2.1 OSHA
and NIOSH
847
Contents
XVII
26.2.2
Environmental Protection Agency (EPA)
852
26.2.3
Nongovernmental Organizations
855
26.3
Fires and Explosions
856
26.3.1
Terminology
856
26.3.2
Pressure-Relief Systems
858
26.4
Process Hazard Analysis
858
26.4.2
HAZOP
859
26.4.2
Dow Fire
&
Explosion Index and Chemical Exposure Index
864
26.5
Chemical Safety and Hazard Investigation Board
867
26.6
Inherently Safe Design
867
26.7
Summary
868
26.8
Glossary
868
What You Should Have Learned
870
References
870
Problems
871
Chapter
27
Green Engineering
873
What You Will Learn
873
27.1
Environmental Regulations
873
27.2
Environmental Fate of Chemicals
874
27.3
Green Chemistry
877
27.4
Pollution Prevention during Process Design
878
27.5
Analysis of a PFD for Pollution Performance and Environmental
Performance
880
27.6
An Example of the Economics of Pollution Prevention
881
27.7
Life Cycle Analysis
882
27.8
Summary
884
What You Should Have Learned
884
References
884
Problems
885
SECTION VI INTERPERSONAL AND COMMUNICATION SKILLS
887
Chapter
28
Teamwork
889
What You Will Learn
889
28.1
Groups
889
28.1.1
Characteristics of Effective Groups
890
28.1.2
Assessing and Improving the Effectiveness of a Group
893
28.1.3
Organizational Behaviors and Strategies
893
28.2
Group Evolution
898
28.2.1
Forming
898
28.2.2
Storming
899
28.2.3
Norming
899
28.2.4
Performing
901
28.3
Teams and Teamwork
901
28.3.1
When Groups Become Teams
901
28.3.2
Unique Characteristics of Teams
902
28.4
Misconceptions
903
xviii Contents
28.4.1
Team Exams
904
28.4.2
Overreliance on Team Members
904
28.5
Learning in Teams
904
28.6
Other Reading
905
28.7
Summary
906
What You Should Have Learned
907
References
907
Problems
907
Appendix A Cost Equations and Curves for the CAPCOST Program
909
A.I Purchased Equipment Costs
909
A.2 Pressure Factors
927
A.2.1 Pressure Factors for Process Vessels
927
A.2.2 Pressure Factors for Other Process Equipment
927
A.3 Material Factors and Bare Module Factors
931
A.3.1 Bare Module and Material Factors for Heat Exchangers, Process
Vessels, and Pumps
931
A.3.2 Bare Module and Material Factors for the Remaining Process
Equipment
935
References
940
Index
941
|
any_adam_object | 1 |
building | Verbundindex |
bvnumber | BV040461427 |
callnumber-first | T - Technology |
callnumber-label | TP155 |
callnumber-raw | TP155.7 |
callnumber-search | TP155.7 |
callnumber-sort | TP 3155.7 |
callnumber-subject | TP - Chemical Technology |
classification_rvk | VN 7000 VN 7300 |
classification_tum | CIT 300f CIT 050f CIT 009f |
ctrlnum | (OCoLC)815946253 (DE-599)BVBBV040461427 |
dewey-full | 660/.2812 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 660 - Chemical engineering |
dewey-raw | 660/.2812 |
dewey-search | 660/.2812 |
dewey-sort | 3660 42812 |
dewey-tens | 660 - Chemical engineering |
discipline | Chemie / Pharmazie Chemie-Ingenieurwesen |
edition | 4. ed., intern. ed. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02053nam a2200517zc 4500</leader><controlfield tag="001">BV040461427</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20121019 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">121009s2013 xxuad|| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">GBA8B8369</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0132940299</subfield><subfield code="c">kart.</subfield><subfield code="9">0-13-294029-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780132940290</subfield><subfield code="c">kart.</subfield><subfield code="9">978-0-13-294029-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)815946253</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV040461427</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-91G</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TP155.7</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">660/.2812</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">VN 7000</subfield><subfield code="0">(DE-625)147598:253</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">VN 7300</subfield><subfield code="0">(DE-625)147616:253</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">CIT 300f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">CIT 050f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">CIT 009f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Analysis, synthesis, and design of chemical processes</subfield><subfield code="c">Richard Turton ...</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">4. ed., intern. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Upper Saddle River, NJ ; Munich [u.a.]</subfield><subfield code="b">Pearson Education Intern.</subfield><subfield code="c">2013</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXXV, 965 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield><subfield code="e">1 CD-ROM (12 cm)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Prentice Hall international series in the physical and chemical engineering sciences</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chemical processes</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Chemischer Prozess</subfield><subfield code="0">(DE-588)4147636-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Chemische Verfahrenstechnik</subfield><subfield code="0">(DE-588)4069941-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Prozessentwicklung</subfield><subfield code="g">Technik</subfield><subfield code="0">(DE-588)4278925-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Chemischer Prozess</subfield><subfield code="0">(DE-588)4147636-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Chemische Verfahrenstechnik</subfield><subfield code="0">(DE-588)4069941-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Prozessentwicklung</subfield><subfield code="g">Technik</subfield><subfield code="0">(DE-588)4278925-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Turton, Richard</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=025308870&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-025308870</subfield></datafield></record></collection> |
id | DE-604.BV040461427 |
illustrated | Illustrated |
indexdate | 2024-07-10T00:24:26Z |
institution | BVB |
isbn | 0132940299 9780132940290 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-025308870 |
oclc_num | 815946253 |
open_access_boolean | |
owner | DE-703 DE-83 DE-91G DE-BY-TUM |
owner_facet | DE-703 DE-83 DE-91G DE-BY-TUM |
physical | XXXV, 965 S. Ill., graph. Darst. 1 CD-ROM (12 cm) |
publishDate | 2013 |
publishDateSearch | 2013 |
publishDateSort | 2013 |
publisher | Pearson Education Intern. |
record_format | marc |
series2 | Prentice Hall international series in the physical and chemical engineering sciences |
spelling | Analysis, synthesis, and design of chemical processes Richard Turton ... 4. ed., intern. ed. Upper Saddle River, NJ ; Munich [u.a.] Pearson Education Intern. 2013 XXXV, 965 S. Ill., graph. Darst. 1 CD-ROM (12 cm) txt rdacontent n rdamedia nc rdacarrier Prentice Hall international series in the physical and chemical engineering sciences Chemical processes Chemischer Prozess (DE-588)4147636-0 gnd rswk-swf Chemische Verfahrenstechnik (DE-588)4069941-9 gnd rswk-swf Prozessentwicklung Technik (DE-588)4278925-4 gnd rswk-swf Chemischer Prozess (DE-588)4147636-0 s DE-604 Chemische Verfahrenstechnik (DE-588)4069941-9 s Prozessentwicklung Technik (DE-588)4278925-4 s Turton, Richard Sonstige oth Digitalisierung UB Bayreuth application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=025308870&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Analysis, synthesis, and design of chemical processes Chemical processes Chemischer Prozess (DE-588)4147636-0 gnd Chemische Verfahrenstechnik (DE-588)4069941-9 gnd Prozessentwicklung Technik (DE-588)4278925-4 gnd |
subject_GND | (DE-588)4147636-0 (DE-588)4069941-9 (DE-588)4278925-4 |
title | Analysis, synthesis, and design of chemical processes |
title_auth | Analysis, synthesis, and design of chemical processes |
title_exact_search | Analysis, synthesis, and design of chemical processes |
title_full | Analysis, synthesis, and design of chemical processes Richard Turton ... |
title_fullStr | Analysis, synthesis, and design of chemical processes Richard Turton ... |
title_full_unstemmed | Analysis, synthesis, and design of chemical processes Richard Turton ... |
title_short | Analysis, synthesis, and design of chemical processes |
title_sort | analysis synthesis and design of chemical processes |
topic | Chemical processes Chemischer Prozess (DE-588)4147636-0 gnd Chemische Verfahrenstechnik (DE-588)4069941-9 gnd Prozessentwicklung Technik (DE-588)4278925-4 gnd |
topic_facet | Chemical processes Chemischer Prozess Chemische Verfahrenstechnik Prozessentwicklung Technik |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=025308870&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT turtonrichard analysissynthesisanddesignofchemicalprocesses |