Introduction to smooth manifolds:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
New York
Springer
[2013]
|
Ausgabe: | Second edition |
Schriftenreihe: | Graduate texts in mathematics
218 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | Literaturverzeichnis Seite 675 - 677 |
Beschreibung: | XV, 708 Seiten Diagramme. - Illustrationen, Diagramme |
ISBN: | 9781441999818 9781489994752 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV040453269 | ||
003 | DE-604 | ||
005 | 20230606 | ||
007 | t | ||
008 | 121004s2013 xxua||| |||| 00||| eng d | ||
020 | |a 9781441999818 |c Hardback |9 978-1-4419-9981-8 | ||
020 | |a 9781489994752 |c softcover |9 978-1-4899-9475-2 | ||
035 | |a (OCoLC)812347398 | ||
035 | |a (DE-599)BVBBV040453269 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a xxu |c US | ||
049 | |a DE-706 |a DE-83 |a DE-19 |a DE-91G |a DE-188 |a DE-20 |a DE-11 |a DE-384 |a DE-739 | ||
050 | 0 | |a QA613 | |
082 | 0 | |a 514/.3 |2 21 | |
082 | 0 | |a 514.34 | |
084 | |a SK 350 |0 (DE-625)143233: |2 rvk | ||
084 | |a 57-01 |2 msc | ||
084 | |a MAT 580f |2 stub | ||
084 | |a 53-01 |2 msc | ||
084 | |a 58-01 |2 msc | ||
084 | |a MAT 530f |2 stub | ||
100 | 1 | |a Lee, John M. |d 1950- |e Verfasser |0 (DE-588)122260880 |4 aut | |
245 | 1 | 0 | |a Introduction to smooth manifolds |c John M. Lee |
250 | |a Second edition | ||
264 | 1 | |a New York |b Springer |c [2013] | |
264 | 4 | |c © 2013 | |
300 | |a XV, 708 Seiten |b Diagramme. - Illustrationen, Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Graduate texts in mathematics |v 218 | |
500 | |a Literaturverzeichnis Seite 675 - 677 | ||
650 | 0 | 7 | |a Glatte Kurve |0 (DE-588)4157470-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Glatte Mannigfaltigkeit |0 (DE-588)4157471-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Glatte Fläche |0 (DE-588)4157467-9 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Glatte Mannigfaltigkeit |0 (DE-588)4157471-0 |D s |
689 | 0 | 1 | |a Glatte Kurve |0 (DE-588)4157470-9 |D s |
689 | 0 | 2 | |a Glatte Fläche |0 (DE-588)4157467-9 |D s |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-1-4419-9982-5 |
830 | 0 | |a Graduate texts in mathematics |v 218 |w (DE-604)BV000000067 |9 218 | |
856 | 4 | 2 | |m Digitalisierung UB Passau - ADAM Catalogue Enrichment |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=025300867&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-025300867 |
Datensatz im Suchindex
_version_ | 1804149515052122113 |
---|---|
adam_text | Contents 1 2 3 Topological Manifolds................................................................................... Smooth Structures......................................................................................... Examples of Smooth Manifolds................................................................... Manifolds with Boundary............................................................................ Problems......................................................................................................... 1 2 10 17 24 29 Smooth Maps..................................................................................................... 32 Smooth Functions and Smooth Maps......................................................... Partitions of Unity......................................................................................... Problems......................................................................................................... 32 40 48 Tangent Vectors.................................................................................................. 50 51 55 60 65 68 71 73 75 Smooth Manifolds ........................................................................................... Tangent Vectors............................................................................................ The Differential of a Smooth Map................................................................ Computations in Coordinates...................................................................... The Tangent
Bundle...................................................................................... Velocity Vectors of Curves............................................................................ Alternative Definitions of the Tangent Space............................................. Categories and Functors............................................................................... Problems......................................................................................................... 4 Submersions, Immersions, and Embeddings............................................. Maps of Constant Rank............................................................................... Embeddings.................................................................................................. Submersions.................................................................................................. Smooth Covering Maps............................................................................... Problems......................................................................................................... 5 77 77 85 88 91 95 98 Embedded Submanifolds ............................................................................ 98 Immersed Submanifolds.................................................................................. 108 Submanifolds..................................................................................................... xi
xii Contents Restricting Maps to Submanifolds ................................................................... 112 The Tangent Space to a Submanifold............................................................ 115 Submanifolds with Boundary......................................................................... 120 Problems............................................................................................................ 123 6 Sard’s Theorem............................................................................................... 125 Sets of Measure Zero ...................................................................................... 125 Sard’s Theorem............................................................................................... 129 The Whitney Embedding Theorem................................................................131 The Whitney Approximation Theorems......................................................... 136 Transversality...................................................................................................143 Problems............................................................................................................ 147 7 Lie Groups...................................................................................................... 150 Basic Definitions............................................................................................... 151 Lie Group Homomorphisms ............................................................................ 153 Lie
Subgroups.................................................................................................. 156 Group Actions and Equivariant Maps............................................................ 161 Problems............................................................................................................ 171 8 Vector Fields...................................................................................................174 Vector Fields on Manifolds............................................................................ 174 Vector Fields and Smooth Maps...................................................................... 181 Lie Brackets...................................................................................................... 185 The Lie Algebra of a Lie Group...................................................................... 189 Problems............................................................................................................ 199 9 Integral Curves and Flows............................................................................ 205 Integral Curves.................................................................................................. 206 Flows.................................................................................................................. 209 Flowouts............................................................................................................217 Flows and Flowouts on Manifolds with Boundary...................................... 222 Lie
Derivatives.................................................................................................. 227 Commuting Vector Fields............................................................................... 231 Time-Dependent Vector Fields ..................................................................... 236 First-Order Partial Differential Equations......................................................239 Problems........................................................................................................... 245 10 Vector Bundles............................................................................................... 249 Vector Bundles.................................................................................................. 249 Local and Global Sections of Vector Bundles............................................... 255 Bundle Homomorphisms ............................................................................... 261 Subbundles........................................................................................................ 264 Fiber Bundles.................................................................................................. 268 Problems........................................................................................................... 268
Contents xiii 11 The Cotangent Bundle................................................................................. 272 Covectors ........................................................................................................ 272 The Differential of a Function........................................................................ 280 Pullbacks of Covector Fields ........................................................................ 284 Line Integrals .................................................................................................. 287 Conservative Covector Fields........................................................................ 292 Problems........................................................................................................... 299 12 Tensors ........................................................................................................... 304 Multilinear Algebra........................................................................................ 305 Symmetric and Alternating Tensors............................................................... 313 Tensors and Tensor Fields on Manifolds ..................................................... 316 Problems........................................................................................................... 324 13 Riemannian Metrics.....................................................................................327 Riemannian Manifolds..................................................................................... 327 The Riemannian Distance
Function............................................................... 337 The Tangent-Cotangent Isomorphism............................................................ 341 Pseudo-Riemannian Metrics............................................................................343 Problems........................................................................................................... 344 14 Differential Forms........................................................................................ 349 The Algebra of Alternating Tensors............................................................... 350 Differential Forms on Manifolds .................................................................. 359 Exterior Derivatives........................................................................................ 362 Problems........................................................................................................... 373 15 Orientations..................................................................................................... 377 Orientations of Vector Spaces........................................................................ 378 Orientations of Manifolds...............................................................................380 The Riemannian Volume Form..................................................................... 388 Orientations and Covering Maps .................................................................. 392
Problems........................................................................................................... 397 16 Integration on Manifolds...................................................... 400 The Geometry of Volume Measurement........................................................ 401 Integration of Differential Forms.................................................................. 402 Stokes’s Theorem........................................................................................... 411 Manifolds with Corners..................................................................................415 Integration on Riemannian Manifolds........................................................... 421 Densities........................................................................................................... 427 Problems........................................................................................................... 434 17 De Rham Cohomology................................................................................. 440 The de Rham Cohomology Groups...............................................................441 Homotopy Invariance.................................................................................... 443 The Mayer-Vietoris Theorem........................................................................ 448 Degree Theory................................................................................................. 457
xiv Contents Proof of the Mayer-Vietoris Theorem............................................................ 460 Problems............................................................................................................464 18 The de Rham Theorem.................................................................................. 467 Singular Homology.........................................................................................467 Singular Cohomology..................................................................................... 472 Smooth Singular Homology............................................................................ 473 The de Rham Theorem..................................................................................... 480 Problems........................................................................................................... 487 19 Distributions and Foliations.........................................................................490 Distributions and Involutivity.........................................................................491 The Frobenius Theorem.................................................................................. 496 Foliations........................................................................................................... 501 Lie Subalgebras and Lie Subgroups............................................................... 505 Overdetermined Systems of Partial Differential Equations......................... 507
Problems........................................................................................................... 512 20 The Exponential Map .................................................................................. 515 One-Parameter Subgroups and the Exponential Map.................................. 516 The Closed Subgroup Theorem..................................................................... 522 Infinitesimal Generators of Group Actions.................................................. 525 The Lie Correspondence.................................................................................. 530 Normal Subgroups............................................................................................533 Problems........................................................................................................... 536 21 Quotient Manifolds........................................................................................ 540 Quotients of Manifolds by Group Actions..................................................... 541 Covering Manifolds........................................................................................ 548 Homogeneous Spaces..................................................................................... 550 Applications to Lie Theory ............................................................................555 Problems........................................................................................................... 560 22 Symplectic
Manifolds..................................................................................... 564 Symplectic Tensors ........................................................................................ 565 Symplectic Structures on Manifolds............................................................... 567 The Darboux Theorem..................................................................................... 571 Hamiltonian Vector Fields............................................................................... 574 Contact Structures........................................................................................... 581 Nonlinear First-Order PDEs........................................................................... 585 Problems........................................................................................................... 590 Appendix A Review of Topology...................................................................596 Topological Spaces ........................................................................................ 596 Subspaces, Products, Disjoint Unions, and Quotients.................................. 601 Connectedness and Compactness.................................................................. 607 Homotopy and the Fundamental Group........................................................ 612 Covering Maps..................................................................................................615
Contents XV Review of Linear Algebra........................................................ 617 Vector Spaces.................................................................................................. 617 Linear Maps..................................................................................................... 622 The Determinant............................................................................................... 628 Inner Products and Norms............................................................................... 635 Direct Products and Direct Sums.................................................................. 638 Appendix B Appendix C Review of Calculus ................................................................. 642 Total and Partial Derivatives............................................................................ 642 Multiple Integrals............................................................................................649 Sequences and Series of Functions............................................................... 656 The Inverse and Implicit Function Theorems............................................... 657 Review of Differential Equations............................................ 663 Existence, Uniqueness, and Smoothness ..................................................... 663 Simple Solution Techniques............................................................................ 672 Appendix D References........................................................................................................ 675
Notation Index.................................................................................................. 678 Subject Index..................................................................................................... 683
|
any_adam_object | 1 |
author | Lee, John M. 1950- |
author_GND | (DE-588)122260880 |
author_facet | Lee, John M. 1950- |
author_role | aut |
author_sort | Lee, John M. 1950- |
author_variant | j m l jm jml |
building | Verbundindex |
bvnumber | BV040453269 |
callnumber-first | Q - Science |
callnumber-label | QA613 |
callnumber-raw | QA613 |
callnumber-search | QA613 |
callnumber-sort | QA 3613 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 350 |
classification_tum | MAT 580f MAT 530f |
ctrlnum | (OCoLC)812347398 (DE-599)BVBBV040453269 |
dewey-full | 514/.3 514.34 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 514 - Topology |
dewey-raw | 514/.3 514.34 |
dewey-search | 514/.3 514.34 |
dewey-sort | 3514 13 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
edition | Second edition |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02144nam a2200553 cb4500</leader><controlfield tag="001">BV040453269</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20230606 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">121004s2013 xxua||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781441999818</subfield><subfield code="c">Hardback</subfield><subfield code="9">978-1-4419-9981-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781489994752</subfield><subfield code="c">softcover</subfield><subfield code="9">978-1-4899-9475-2</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)812347398</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV040453269</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-706</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-739</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA613</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">514/.3</subfield><subfield code="2">21</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">514.34</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 350</subfield><subfield code="0">(DE-625)143233:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">57-01</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 580f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">53-01</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">58-01</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 530f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lee, John M.</subfield><subfield code="d">1950-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)122260880</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Introduction to smooth manifolds</subfield><subfield code="c">John M. Lee</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Second edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York</subfield><subfield code="b">Springer</subfield><subfield code="c">[2013]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2013</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XV, 708 Seiten</subfield><subfield code="b">Diagramme. - Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Graduate texts in mathematics</subfield><subfield code="v">218</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Literaturverzeichnis Seite 675 - 677</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Glatte Kurve</subfield><subfield code="0">(DE-588)4157470-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Glatte Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4157471-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Glatte Fläche</subfield><subfield code="0">(DE-588)4157467-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Glatte Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4157471-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Glatte Kurve</subfield><subfield code="0">(DE-588)4157470-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Glatte Fläche</subfield><subfield code="0">(DE-588)4157467-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-1-4419-9982-5</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Graduate texts in mathematics</subfield><subfield code="v">218</subfield><subfield code="w">(DE-604)BV000000067</subfield><subfield code="9">218</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Passau - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=025300867&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-025300867</subfield></datafield></record></collection> |
id | DE-604.BV040453269 |
illustrated | Illustrated |
indexdate | 2024-07-10T00:24:15Z |
institution | BVB |
isbn | 9781441999818 9781489994752 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-025300867 |
oclc_num | 812347398 |
open_access_boolean | |
owner | DE-706 DE-83 DE-19 DE-BY-UBM DE-91G DE-BY-TUM DE-188 DE-20 DE-11 DE-384 DE-739 |
owner_facet | DE-706 DE-83 DE-19 DE-BY-UBM DE-91G DE-BY-TUM DE-188 DE-20 DE-11 DE-384 DE-739 |
physical | XV, 708 Seiten Diagramme. - Illustrationen, Diagramme |
publishDate | 2013 |
publishDateSearch | 2013 |
publishDateSort | 2013 |
publisher | Springer |
record_format | marc |
series | Graduate texts in mathematics |
series2 | Graduate texts in mathematics |
spelling | Lee, John M. 1950- Verfasser (DE-588)122260880 aut Introduction to smooth manifolds John M. Lee Second edition New York Springer [2013] © 2013 XV, 708 Seiten Diagramme. - Illustrationen, Diagramme txt rdacontent n rdamedia nc rdacarrier Graduate texts in mathematics 218 Literaturverzeichnis Seite 675 - 677 Glatte Kurve (DE-588)4157470-9 gnd rswk-swf Glatte Mannigfaltigkeit (DE-588)4157471-0 gnd rswk-swf Glatte Fläche (DE-588)4157467-9 gnd rswk-swf Glatte Mannigfaltigkeit (DE-588)4157471-0 s Glatte Kurve (DE-588)4157470-9 s Glatte Fläche (DE-588)4157467-9 s DE-604 Erscheint auch als Online-Ausgabe 978-1-4419-9982-5 Graduate texts in mathematics 218 (DE-604)BV000000067 218 Digitalisierung UB Passau - ADAM Catalogue Enrichment application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=025300867&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Lee, John M. 1950- Introduction to smooth manifolds Graduate texts in mathematics Glatte Kurve (DE-588)4157470-9 gnd Glatte Mannigfaltigkeit (DE-588)4157471-0 gnd Glatte Fläche (DE-588)4157467-9 gnd |
subject_GND | (DE-588)4157470-9 (DE-588)4157471-0 (DE-588)4157467-9 |
title | Introduction to smooth manifolds |
title_auth | Introduction to smooth manifolds |
title_exact_search | Introduction to smooth manifolds |
title_full | Introduction to smooth manifolds John M. Lee |
title_fullStr | Introduction to smooth manifolds John M. Lee |
title_full_unstemmed | Introduction to smooth manifolds John M. Lee |
title_short | Introduction to smooth manifolds |
title_sort | introduction to smooth manifolds |
topic | Glatte Kurve (DE-588)4157470-9 gnd Glatte Mannigfaltigkeit (DE-588)4157471-0 gnd Glatte Fläche (DE-588)4157467-9 gnd |
topic_facet | Glatte Kurve Glatte Mannigfaltigkeit Glatte Fläche |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=025300867&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV000000067 |
work_keys_str_mv | AT leejohnm introductiontosmoothmanifolds |