From Stein to Weinstein and back: symplectic geometry of affine complex manifolds
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Providence, Rhode Island
American Mathematical Society
2012
|
Schriftenreihe: | American Mathematical Society Colloquium publications
volume 59 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XII, 364 Seiten Illustrationen, Diagramme |
ISBN: | 9780821885338 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV040427420 | ||
003 | DE-604 | ||
005 | 20220516 | ||
007 | t | ||
008 | 120920s2012 xxua||| |||| 00||| eng d | ||
010 | |a 2012019063 | ||
020 | |a 9780821885338 |c alk. paper |9 978-0-8218-8533-8 | ||
035 | |a (OCoLC)815925634 | ||
035 | |a (DE-599)BVBBV040427420 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a xxu |c US | ||
049 | |a DE-384 |a DE-188 |a DE-19 |a DE-11 | ||
050 | 0 | |a QA665 | |
082 | 0 | |a 515/.946 | |
084 | |a SK 350 |0 (DE-625)143233: |2 rvk | ||
084 | |a SK 370 |0 (DE-625)143234: |2 rvk | ||
100 | 1 | |a Cieliebak, Kai |d 1966- |e Verfasser |0 (DE-588)1032518677 |4 aut | |
245 | 1 | 0 | |a From Stein to Weinstein and back |b symplectic geometry of affine complex manifolds |c Kai Cieliebak, Yakov Eliashberg |
264 | 1 | |a Providence, Rhode Island |b American Mathematical Society |c 2012 | |
264 | 4 | |c © 2012 | |
300 | |a XII, 364 Seiten |b Illustrationen, Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a American Mathematical Society Colloquium publications |v volume 59 | |
650 | 4 | |a Symplectic geometry | |
650 | 4 | |a Stein manifolds | |
650 | 7 | |a Several complex variables and analytic spaces -- Complex manifolds -- Stein manifolds |2 msc | |
650 | 7 | |a Differential geometry -- Symplectic geometry, contact geometry -- Global theory of symplectic and contact manifolds |2 msc | |
650 | 0 | 7 | |a Symplektische Geometrie |0 (DE-588)4194232-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Komplexe Mannigfaltigkeit |0 (DE-588)4031996-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Stein-Mannigfaltigkeit |0 (DE-588)4183070-2 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Symplektische Geometrie |0 (DE-588)4194232-2 |D s |
689 | 0 | 1 | |a Stein-Mannigfaltigkeit |0 (DE-588)4183070-2 |D s |
689 | 0 | 2 | |a Komplexe Mannigfaltigkeit |0 (DE-588)4031996-9 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Ēlîʾašberg, Yaʿaqov |d 1946- |e Verfasser |0 (DE-588)113721544 |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-1-4704-1582-2 |
830 | 0 | |a American Mathematical Society Colloquium publications |v volume 59 |w (DE-604)BV035417609 |9 59 | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=025279981&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-025279981 |
Datensatz im Suchindex
_version_ | 1804149488737058816 |
---|---|
adam_text | Titel: From Stein to Weinstein and back
Autor: Cieliebak, Kai
Jahr: 2012
Contents
Preface
Chapter 1. Introduction 1
1.1. An overview 1
1.2. Plan of the book 6
Part 1. J-Convexity 9
Chapter 2. J-Convex Functions and Hypersurfaces 11
2.1. Linear algebra 11
2.2. J-convex functions 13
2.3. The Levi form of a hypersurface 15
2.4. Completeness 18
2.5. J-convexity and geometric convexity , 19
2.6. Normalized Levi form and mean normal curvature 20
2.7. Examples of J-convex functions and hypersurfaces 22
2.8. Symplectic properties of J-convex functions 25
2.9. Computations in C 27
Chapter 3. Smoothing 31
3.1. J-convexity and plurisubharmonicity 31
3.2. Smoothing of J-convex functions 34
3.3. Critical points of J-convex functions 37
3.4. Prom families of hypersurfaces to J-convex functions 40
3.5. J-convex functions near totally real submanifolds 42
3.6. Functions with J-convex level sets 48
3.7. Normalized modulus of J-convexity 50
Chapter 4. Shapes for ¿-Convex Hypersurfaces 57
4.1. Main models 57
4.2. Shapes for ¿-convex hypersurfaces 59
4.3. Properties of ¿-convex shapes 64
4.4. Shapes in the subcritical case 67
4.5. Construction of special shapes 68
4.6. Families of special shapes 75
4.7. Convexity estimates 83
Chapter 5. Some Complex Analysis 89
5.1. Holomorphic convexity 89
5.2. Relation to J-convexity 90
5.3. Definitions of Stein manifolds 93
vin CONTENTS
5.4. Hartogs phenomena 94
5.5. Grauert s Oka principle 96
5.6. Coherent analytic sheaves on Stein manifolds 99
5.7. Real analytic manifolds 101
5.8. Real analytic approximations 104
5.9. Approximately holomorphic extension of maps
from totally real submanifolds 107
5.10. CR structures 108
Part 2. Existence of Stein Structures 113
Chapter 6. Symplectic and Contact Preliminaries 115
6.1. Symplectic vector spaces 115
6.2. Symplectic vector bundles 117
6.3. Symplectic manifolds 118
6.4. Moser s trick and symplectic normal forms 119
6.5. Contact manifolds and their Legendrian submanifolds 122
6.6. Contact normal forms 125
6.7. Real analytic approximations of isotropic submanifolds 127
6.8. Relations between symplectic and contact manifolds 128
Chapter 7. The /¡.-principles 131
7.1. Immersions and embeddings 131
7.2. The /i-priñciple for isotropic immersions 135
7.3. The /i-principle for subcritical isotropic embeddings 136
7.4. Stabilization of Legendrian submanifolds 137
7.5. The existence theorem for Legendrian embeddings 139
7.6. Legendrian knots in overtwisted contact manifolds 141
7.7. Murphy s /i-principle for loose Legendrian embeddings 142
7.8. Directed immersions and embeddings 146
7.9. Discs attached to J-convex boundaries 150
Chapter 8. The Existence Theorem 155
8.1. Some notions from Morse theory 155
8.2. Surrounding stable discs 156
8.3. Existence of complex structures 161
8.4. Existence of Stein structures in complex dimension ^ 2 163
8.5. J-convex surrounding functions 167
8.6. J-convex retracts 171
8.7. Approximating continuous maps by holomorphic ones 174
8.8. Variations on a theme of E. Kallin 181
Part 3. Morse-Smale Theory for J-Convex Functions 185
Chapter 9. Recollections from Morse Theory 187
9.1. Critical points of functions 187
9.2. Zeroes of vector fields 189
9.3. Gradient-like vector fields 192
9.4. Smooth surroundings 198
9.5. Changing Lyapunov functions near critical points 200
CONTENTS ¡x
9.6. Smale cobordisms 202
9.7. Morse and Smale homotopies 206
9.8. The /i-cobordism theorem 210
9.9. The two-index theorem 212
9.10. Pseudo-isotopies 213
Chapter 10. Modifications of J-Convex Morse Functions 215
10.1. Moving attaching spheres by isotropic isotopies 215
10.2. Relaxing the J-orthogonality condition 222
10.3. Moving critical levels 223
10.4. Creation and cancellation of critical points 224
10.5. Carving one J-convex function with, another one 225
10.6. Surrounding a stable half-disc 225
10.7. Proof of the cancellation theorem 231
10.8. Proof of the creation theorem 232
Part 4. From Stein to Weinstein and Back 235
Chapter 11. Weinstein Structures 237
11.1. Liouville cobordisms and manifolds 237
11.2. Liouville homotopies 239
11.3. Zeroes of Liouville fields 241
11.4. Weinstein cobordisms and manifolds 243
11.5. From Stein to Weinstein 244
11.6. Weinstein and Stein homotopies 245
11.7. Weinstein structures with unique critical points 249
11.8. Subcritical and flexible Weinstein structures 250
Chapter 12. Modifications of Weinstein Structures 253
12.1. Weinstein structures with given functions 253
12.2. Holonomy of Weinstein cobordisms 256
12.3. Liouville fields near isotropic submanifolds 258
12.4. Weinstein structures near critical points 263
12.5. Weinstein structures near stable discs 265
12.6. Morse-Smale theory for Weinstein structures 267
12.7. Elementary Weinstein homotopies 268
Chapter 13. Existence Revisited 271
13.1. Existence of Weinstein structures 271
13.2. From Weinstein to Stein: existence 273
13.3. Proof of the Stein existence theorems 275
Chapter 14. Deformations of Flexible Weinstein Structures 279
14.1. Homotopies of flexible Weinstein cobordisms 279
14.2. Proof of the first Weinstein deformation theorem 280
14.3. Proof of the second Weinstein deformation theorem 286
14.4. Subcritical Weinstein manifolds are split 288
14.5. Symplectic pseudo-isotopies 292
Chapter 15. Deformations of Stein Structures 295
x CONTENTS
15.1. Prom Weinstein to Stein: homotopies 295
15.2. Proof of the first Stein deformation theorem 298
15.3. Homotopies of flexible Stein structures 302
Part 5. Stein Manifolds and Symplectic Topology 305
Chapter 16. Stein Manifolds of Complex Dimension Two 307
16.1. Filling by holomorphic discs 307
16.2. Stein fillings 310
16.3. Stein structures on 4-manifolds 320
Chapter 17. Exotic Stein Structures 323
17.1. Symplectic homology 323
17.2. Exotic Stein structures 325
Appendix A. Some Algebraic Topology 329
A.I. Serre fibrations 329
A.2. Some homotopy groups 331
Appendix B. Obstructions to Formal Legendrian Isotopies 335
Appendix C. Biographical Notes on the Main Characters 343
C.I. Complex analysis 343
C.2. Differential and symplectic topology 348
Bibliography 353
Index 361
|
any_adam_object | 1 |
author | Cieliebak, Kai 1966- Ēlîʾašberg, Yaʿaqov 1946- |
author_GND | (DE-588)1032518677 (DE-588)113721544 |
author_facet | Cieliebak, Kai 1966- Ēlîʾašberg, Yaʿaqov 1946- |
author_role | aut aut |
author_sort | Cieliebak, Kai 1966- |
author_variant | k c kc y ē yē |
building | Verbundindex |
bvnumber | BV040427420 |
callnumber-first | Q - Science |
callnumber-label | QA665 |
callnumber-raw | QA665 |
callnumber-search | QA665 |
callnumber-sort | QA 3665 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 350 SK 370 |
ctrlnum | (OCoLC)815925634 (DE-599)BVBBV040427420 |
dewey-full | 515/.946 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515/.946 |
dewey-search | 515/.946 |
dewey-sort | 3515 3946 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02424nam a2200529 cb4500</leader><controlfield tag="001">BV040427420</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20220516 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">120920s2012 xxua||| |||| 00||| eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">2012019063</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780821885338</subfield><subfield code="c">alk. paper</subfield><subfield code="9">978-0-8218-8533-8</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)815925634</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV040427420</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA665</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515/.946</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 350</subfield><subfield code="0">(DE-625)143233:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 370</subfield><subfield code="0">(DE-625)143234:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Cieliebak, Kai</subfield><subfield code="d">1966-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1032518677</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">From Stein to Weinstein and back</subfield><subfield code="b">symplectic geometry of affine complex manifolds</subfield><subfield code="c">Kai Cieliebak, Yakov Eliashberg</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Providence, Rhode Island</subfield><subfield code="b">American Mathematical Society</subfield><subfield code="c">2012</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2012</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XII, 364 Seiten</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">American Mathematical Society Colloquium publications</subfield><subfield code="v">volume 59</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Symplectic geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stein manifolds</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Several complex variables and analytic spaces -- Complex manifolds -- Stein manifolds</subfield><subfield code="2">msc</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Differential geometry -- Symplectic geometry, contact geometry -- Global theory of symplectic and contact manifolds</subfield><subfield code="2">msc</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Symplektische Geometrie</subfield><subfield code="0">(DE-588)4194232-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Komplexe Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4031996-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Stein-Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4183070-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Symplektische Geometrie</subfield><subfield code="0">(DE-588)4194232-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Stein-Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4183070-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Komplexe Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4031996-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ēlîʾašberg, Yaʿaqov</subfield><subfield code="d">1946-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)113721544</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-1-4704-1582-2</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">American Mathematical Society Colloquium publications</subfield><subfield code="v">volume 59</subfield><subfield code="w">(DE-604)BV035417609</subfield><subfield code="9">59</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=025279981&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-025279981</subfield></datafield></record></collection> |
id | DE-604.BV040427420 |
illustrated | Illustrated |
indexdate | 2024-07-10T00:23:50Z |
institution | BVB |
isbn | 9780821885338 |
language | English |
lccn | 2012019063 |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-025279981 |
oclc_num | 815925634 |
open_access_boolean | |
owner | DE-384 DE-188 DE-19 DE-BY-UBM DE-11 |
owner_facet | DE-384 DE-188 DE-19 DE-BY-UBM DE-11 |
physical | XII, 364 Seiten Illustrationen, Diagramme |
publishDate | 2012 |
publishDateSearch | 2012 |
publishDateSort | 2012 |
publisher | American Mathematical Society |
record_format | marc |
series | American Mathematical Society Colloquium publications |
series2 | American Mathematical Society Colloquium publications |
spelling | Cieliebak, Kai 1966- Verfasser (DE-588)1032518677 aut From Stein to Weinstein and back symplectic geometry of affine complex manifolds Kai Cieliebak, Yakov Eliashberg Providence, Rhode Island American Mathematical Society 2012 © 2012 XII, 364 Seiten Illustrationen, Diagramme txt rdacontent n rdamedia nc rdacarrier American Mathematical Society Colloquium publications volume 59 Symplectic geometry Stein manifolds Several complex variables and analytic spaces -- Complex manifolds -- Stein manifolds msc Differential geometry -- Symplectic geometry, contact geometry -- Global theory of symplectic and contact manifolds msc Symplektische Geometrie (DE-588)4194232-2 gnd rswk-swf Komplexe Mannigfaltigkeit (DE-588)4031996-9 gnd rswk-swf Stein-Mannigfaltigkeit (DE-588)4183070-2 gnd rswk-swf Symplektische Geometrie (DE-588)4194232-2 s Stein-Mannigfaltigkeit (DE-588)4183070-2 s Komplexe Mannigfaltigkeit (DE-588)4031996-9 s DE-604 Ēlîʾašberg, Yaʿaqov 1946- Verfasser (DE-588)113721544 aut Erscheint auch als Online-Ausgabe 978-1-4704-1582-2 American Mathematical Society Colloquium publications volume 59 (DE-604)BV035417609 59 HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=025279981&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Cieliebak, Kai 1966- Ēlîʾašberg, Yaʿaqov 1946- From Stein to Weinstein and back symplectic geometry of affine complex manifolds American Mathematical Society Colloquium publications Symplectic geometry Stein manifolds Several complex variables and analytic spaces -- Complex manifolds -- Stein manifolds msc Differential geometry -- Symplectic geometry, contact geometry -- Global theory of symplectic and contact manifolds msc Symplektische Geometrie (DE-588)4194232-2 gnd Komplexe Mannigfaltigkeit (DE-588)4031996-9 gnd Stein-Mannigfaltigkeit (DE-588)4183070-2 gnd |
subject_GND | (DE-588)4194232-2 (DE-588)4031996-9 (DE-588)4183070-2 |
title | From Stein to Weinstein and back symplectic geometry of affine complex manifolds |
title_auth | From Stein to Weinstein and back symplectic geometry of affine complex manifolds |
title_exact_search | From Stein to Weinstein and back symplectic geometry of affine complex manifolds |
title_full | From Stein to Weinstein and back symplectic geometry of affine complex manifolds Kai Cieliebak, Yakov Eliashberg |
title_fullStr | From Stein to Weinstein and back symplectic geometry of affine complex manifolds Kai Cieliebak, Yakov Eliashberg |
title_full_unstemmed | From Stein to Weinstein and back symplectic geometry of affine complex manifolds Kai Cieliebak, Yakov Eliashberg |
title_short | From Stein to Weinstein and back |
title_sort | from stein to weinstein and back symplectic geometry of affine complex manifolds |
title_sub | symplectic geometry of affine complex manifolds |
topic | Symplectic geometry Stein manifolds Several complex variables and analytic spaces -- Complex manifolds -- Stein manifolds msc Differential geometry -- Symplectic geometry, contact geometry -- Global theory of symplectic and contact manifolds msc Symplektische Geometrie (DE-588)4194232-2 gnd Komplexe Mannigfaltigkeit (DE-588)4031996-9 gnd Stein-Mannigfaltigkeit (DE-588)4183070-2 gnd |
topic_facet | Symplectic geometry Stein manifolds Several complex variables and analytic spaces -- Complex manifolds -- Stein manifolds Differential geometry -- Symplectic geometry, contact geometry -- Global theory of symplectic and contact manifolds Symplektische Geometrie Komplexe Mannigfaltigkeit Stein-Mannigfaltigkeit |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=025279981&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV035417609 |
work_keys_str_mv | AT cieliebakkai fromsteintoweinsteinandbacksymplecticgeometryofaffinecomplexmanifolds AT eliʾasbergyaʿaqov fromsteintoweinsteinandbacksymplecticgeometryofaffinecomplexmanifolds |