Representations of Lie algebras: an introduction through gln
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge Univ. Press
2012
|
Ausgabe: | 1. publ. |
Schriftenreihe: | Australian Mathematical Society lecture series
22 |
Schlagworte: | |
Online-Zugang: | Cover image Inhaltsverzeichnis |
Beschreibung: | "This bold and refreshing approach to Lie algebras assumes only modest prerequisites (linear algebra up to the Jordan canonical form and a basic familiarity with groups and rings), yet it reaches a major result in representation theory: the highest-weight classification of irreducible modules of the general linear Lie algebra. The author's exposition is focused on this goal rather than aiming at the widest generality and emphasis is placed on explicit calculations with bases and matrices. The book begins with a motivating chapter explaining the context and relevance of Lie algebras and their representations and concludes with a guide to further reading. Numerous examples and exercises with full solutions are included. Based on the author's own introductory course on Lie algebras, this book has been thoroughly road-tested by advanced undergraduate and beginning graduate students and it is also suited to individual readers wanting an introduction to this important area of mathematics"-- Provided by publisher. |
Beschreibung: | IX, 156 S. |
ISBN: | 9781107653610 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV040423140 | ||
003 | DE-604 | ||
005 | 20130306 | ||
007 | t | ||
008 | 120918s2012 xxk |||| 00||| eng d | ||
010 | |a 2012021841 | ||
020 | |a 9781107653610 |c pbk. |9 978-1-107-65361-0 | ||
035 | |a (OCoLC)815897736 | ||
035 | |a (DE-599)BVBBV040423140 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
044 | |a xxk |c GB | ||
049 | |a DE-384 |a DE-91G |a DE-19 |a DE-355 |a DE-20 | ||
050 | 0 | |a QA252.3 | |
082 | 0 | |a 512/.482 | |
084 | |a SK 260 |0 (DE-625)143227: |2 rvk | ||
084 | |a SK 340 |0 (DE-625)143232: |2 rvk | ||
084 | |a MAT 173f |2 stub | ||
100 | 1 | |a Henderson, Anthony |d 1976- |e Verfasser |0 (DE-588)1045962104 |4 aut | |
245 | 1 | 0 | |a Representations of Lie algebras |b an introduction through gln |c Anthony Henderson |
250 | |a 1. publ. | ||
264 | 1 | |a Cambridge |b Cambridge Univ. Press |c 2012 | |
300 | |a IX, 156 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Australian Mathematical Society lecture series |v 22 | |
500 | |a "This bold and refreshing approach to Lie algebras assumes only modest prerequisites (linear algebra up to the Jordan canonical form and a basic familiarity with groups and rings), yet it reaches a major result in representation theory: the highest-weight classification of irreducible modules of the general linear Lie algebra. The author's exposition is focused on this goal rather than aiming at the widest generality and emphasis is placed on explicit calculations with bases and matrices. The book begins with a motivating chapter explaining the context and relevance of Lie algebras and their representations and concludes with a guide to further reading. Numerous examples and exercises with full solutions are included. Based on the author's own introductory course on Lie algebras, this book has been thoroughly road-tested by advanced undergraduate and beginning graduate students and it is also suited to individual readers wanting an introduction to this important area of mathematics"-- Provided by publisher. | ||
650 | 4 | |a Representations of Lie algebras | |
650 | 7 | |a MATHEMATICS / Algebra / General |2 bisacsh | |
650 | 0 | 7 | |a Darstellungstheorie |0 (DE-588)4148816-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Lie-Algebra |0 (DE-588)4130355-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Lie-Algebra |0 (DE-588)4130355-6 |D s |
689 | 0 | 1 | |a Darstellungstheorie |0 (DE-588)4148816-7 |D s |
689 | 0 | |5 DE-604 | |
830 | 0 | |a Australian Mathematical Society lecture series |v 22 |w (DE-604)BV001902595 |9 22 | |
856 | 4 | |u http://assets.cambridge.org/97811076/53610/cover/9781107653610.jpg |3 Cover image | |
856 | 4 | 2 | |m LoC Fremddatenuebernahme |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=025275804&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-025275804 |
Datensatz im Suchindex
_version_ | 1804149482776952832 |
---|---|
adam_text | REPRESENTATIONS OF LIE ALGEBRAS
/ HENDERSON, ANTHONY [AUTHOR]
: 2012
TABLE OF CONTENTS / INHALTSVERZEICHNIS
1. MOTIVATION: REPRESENTATIONS OF LIE GROUPS; 2. DEFINITION OF A LIE
ALGEBRA; 3. BASIC STRUCTURE OF A LIE ALGEBRA; 4. MODULES OVER A LIE
ALGEBRA; 5. THE THEORY OF SL2-MODULES; 6. GENERAL THEORY OF MODULES; 7.
INTEGRAL GLN-MODULES; 8. GUIDE TO FURTHER READING; APPENDIX: SOLUTIONS
TO THE EXERCISES; BIBLIOGRAPHY; INDEX.
DIESES SCHRIFTSTUECK WURDE MASCHINELL ERZEUGT.
|
any_adam_object | 1 |
author | Henderson, Anthony 1976- |
author_GND | (DE-588)1045962104 |
author_facet | Henderson, Anthony 1976- |
author_role | aut |
author_sort | Henderson, Anthony 1976- |
author_variant | a h ah |
building | Verbundindex |
bvnumber | BV040423140 |
callnumber-first | Q - Science |
callnumber-label | QA252 |
callnumber-raw | QA252.3 |
callnumber-search | QA252.3 |
callnumber-sort | QA 3252.3 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 260 SK 340 |
classification_tum | MAT 173f |
ctrlnum | (OCoLC)815897736 (DE-599)BVBBV040423140 |
dewey-full | 512/.482 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512/.482 |
dewey-search | 512/.482 |
dewey-sort | 3512 3482 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
edition | 1. publ. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02958nam a2200493 cb4500</leader><controlfield tag="001">BV040423140</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20130306 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">120918s2012 xxk |||| 00||| eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">2012021841</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107653610</subfield><subfield code="c">pbk.</subfield><subfield code="9">978-1-107-65361-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)815897736</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV040423140</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxk</subfield><subfield code="c">GB</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-20</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA252.3</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512/.482</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 260</subfield><subfield code="0">(DE-625)143227:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 340</subfield><subfield code="0">(DE-625)143232:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 173f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Henderson, Anthony</subfield><subfield code="d">1976-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1045962104</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Representations of Lie algebras</subfield><subfield code="b">an introduction through gln</subfield><subfield code="c">Anthony Henderson</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1. publ.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge Univ. Press</subfield><subfield code="c">2012</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">IX, 156 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Australian Mathematical Society lecture series</subfield><subfield code="v">22</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">"This bold and refreshing approach to Lie algebras assumes only modest prerequisites (linear algebra up to the Jordan canonical form and a basic familiarity with groups and rings), yet it reaches a major result in representation theory: the highest-weight classification of irreducible modules of the general linear Lie algebra. The author's exposition is focused on this goal rather than aiming at the widest generality and emphasis is placed on explicit calculations with bases and matrices. The book begins with a motivating chapter explaining the context and relevance of Lie algebras and their representations and concludes with a guide to further reading. Numerous examples and exercises with full solutions are included. Based on the author's own introductory course on Lie algebras, this book has been thoroughly road-tested by advanced undergraduate and beginning graduate students and it is also suited to individual readers wanting an introduction to this important area of mathematics"-- Provided by publisher.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Representations of Lie algebras</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Algebra / General</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Darstellungstheorie</subfield><subfield code="0">(DE-588)4148816-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lie-Algebra</subfield><subfield code="0">(DE-588)4130355-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Lie-Algebra</subfield><subfield code="0">(DE-588)4130355-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Darstellungstheorie</subfield><subfield code="0">(DE-588)4148816-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Australian Mathematical Society lecture series</subfield><subfield code="v">22</subfield><subfield code="w">(DE-604)BV001902595</subfield><subfield code="9">22</subfield></datafield><datafield tag="856" ind1="4" ind2=" "><subfield code="u">http://assets.cambridge.org/97811076/53610/cover/9781107653610.jpg</subfield><subfield code="3">Cover image</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">LoC Fremddatenuebernahme</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=025275804&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-025275804</subfield></datafield></record></collection> |
id | DE-604.BV040423140 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T00:23:44Z |
institution | BVB |
isbn | 9781107653610 |
language | English |
lccn | 2012021841 |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-025275804 |
oclc_num | 815897736 |
open_access_boolean | |
owner | DE-384 DE-91G DE-BY-TUM DE-19 DE-BY-UBM DE-355 DE-BY-UBR DE-20 |
owner_facet | DE-384 DE-91G DE-BY-TUM DE-19 DE-BY-UBM DE-355 DE-BY-UBR DE-20 |
physical | IX, 156 S. |
publishDate | 2012 |
publishDateSearch | 2012 |
publishDateSort | 2012 |
publisher | Cambridge Univ. Press |
record_format | marc |
series | Australian Mathematical Society lecture series |
series2 | Australian Mathematical Society lecture series |
spelling | Henderson, Anthony 1976- Verfasser (DE-588)1045962104 aut Representations of Lie algebras an introduction through gln Anthony Henderson 1. publ. Cambridge Cambridge Univ. Press 2012 IX, 156 S. txt rdacontent n rdamedia nc rdacarrier Australian Mathematical Society lecture series 22 "This bold and refreshing approach to Lie algebras assumes only modest prerequisites (linear algebra up to the Jordan canonical form and a basic familiarity with groups and rings), yet it reaches a major result in representation theory: the highest-weight classification of irreducible modules of the general linear Lie algebra. The author's exposition is focused on this goal rather than aiming at the widest generality and emphasis is placed on explicit calculations with bases and matrices. The book begins with a motivating chapter explaining the context and relevance of Lie algebras and their representations and concludes with a guide to further reading. Numerous examples and exercises with full solutions are included. Based on the author's own introductory course on Lie algebras, this book has been thoroughly road-tested by advanced undergraduate and beginning graduate students and it is also suited to individual readers wanting an introduction to this important area of mathematics"-- Provided by publisher. Representations of Lie algebras MATHEMATICS / Algebra / General bisacsh Darstellungstheorie (DE-588)4148816-7 gnd rswk-swf Lie-Algebra (DE-588)4130355-6 gnd rswk-swf Lie-Algebra (DE-588)4130355-6 s Darstellungstheorie (DE-588)4148816-7 s DE-604 Australian Mathematical Society lecture series 22 (DE-604)BV001902595 22 http://assets.cambridge.org/97811076/53610/cover/9781107653610.jpg Cover image LoC Fremddatenuebernahme application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=025275804&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Henderson, Anthony 1976- Representations of Lie algebras an introduction through gln Australian Mathematical Society lecture series Representations of Lie algebras MATHEMATICS / Algebra / General bisacsh Darstellungstheorie (DE-588)4148816-7 gnd Lie-Algebra (DE-588)4130355-6 gnd |
subject_GND | (DE-588)4148816-7 (DE-588)4130355-6 |
title | Representations of Lie algebras an introduction through gln |
title_auth | Representations of Lie algebras an introduction through gln |
title_exact_search | Representations of Lie algebras an introduction through gln |
title_full | Representations of Lie algebras an introduction through gln Anthony Henderson |
title_fullStr | Representations of Lie algebras an introduction through gln Anthony Henderson |
title_full_unstemmed | Representations of Lie algebras an introduction through gln Anthony Henderson |
title_short | Representations of Lie algebras |
title_sort | representations of lie algebras an introduction through gln |
title_sub | an introduction through gln |
topic | Representations of Lie algebras MATHEMATICS / Algebra / General bisacsh Darstellungstheorie (DE-588)4148816-7 gnd Lie-Algebra (DE-588)4130355-6 gnd |
topic_facet | Representations of Lie algebras MATHEMATICS / Algebra / General Darstellungstheorie Lie-Algebra |
url | http://assets.cambridge.org/97811076/53610/cover/9781107653610.jpg http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=025275804&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV001902595 |
work_keys_str_mv | AT hendersonanthony representationsofliealgebrasanintroductionthroughgln |