Molecular relaxation in liquids:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
New York [u.a.]
Oxford Univ. Press
2012
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | Includes bibliographical references and index |
Beschreibung: | XIV, 312 S. graph. Darst. 25 cm |
ISBN: | 9780199863327 0199863326 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV040365237 | ||
003 | DE-604 | ||
005 | 20140324 | ||
007 | t | ||
008 | 120814s2012 xxud||| |||| 00||| eng d | ||
010 | |a 2011031643 | ||
015 | |a GBB217289 |2 dnb | ||
020 | |a 9780199863327 |c hardcover : alk. paper |9 978-0-19-986332-7 | ||
020 | |a 0199863326 |c hardcover : alk. paper |9 0-19-986332-6 | ||
035 | |a (OCoLC)795906997 | ||
035 | |a (DE-599)BVBBV040365237 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
044 | |a xxu |c US | ||
049 | |a DE-11 |a DE-20 |a DE-703 | ||
050 | 0 | |a QD543 | |
082 | 0 | |a 538/.3 | |
084 | |a VE 5800 |0 (DE-625)147124:253 |2 rvk | ||
100 | 1 | |a Bagchi, Biman |d 1954- |e Verfasser |0 (DE-588)1023178826 |4 aut | |
245 | 1 | 0 | |a Molecular relaxation in liquids |c Biman Bagchi |
264 | 1 | |a New York [u.a.] |b Oxford Univ. Press |c 2012 | |
300 | |a XIV, 312 S. |b graph. Darst. |c 25 cm | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
500 | |a Includes bibliographical references and index | ||
650 | 4 | |a Relaxation phenomena | |
650 | 4 | |a Liquids | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=025218973&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-025218973 |
Datensatz im Suchindex
_version_ | 1804149409157480448 |
---|---|
adam_text | Titel: Molecular relaxation in liquids
Autor: Bagchi, Biman
Jahr: 2012
CONTENTS
Preface xiii
Acknowledgments xv
Foreword xvü
1 Basic Concepts 3
1.1 Introduction 3
1.2 Response Functions and Fluctuations 4
1.3 Time-Correlation Functions 6
1.4 Linear Response Theory 6
1.5 Fluctuation-Dissipation Theorem 8
1.6 Diffusion, Friction, and Viscosity 8
1.7 Summary 10
2 Phenomenological Description of Relaxation in Liquids 12
2.1 Introduction 12
2.2 Langevin Equation 13
2.3 Fokker-Planck Equation 14
2.4 Smoluchowski Equation 15
2.5 Master Equations 16
2.6 The Special Caseof Harmonie Potential 16
2.7 Summary 17
3 Density and Momentum Relaxation in Liquids 19
3.1 Introduction 19
3.2 Hydrodynamics at Large Length Scales 20
3.2.1 Rayleigh-Brillouin Spectrum 22
3.3 Hydrodynamic Relations between Self-Diffusion Coefficient
andViscosity 24
3.4 Slow Dynamics at Large Wave Numbers: de Gennes Narrowing 25
3.5 Extended Hydrodynamics: Dynamics at Intermediate Length Scales 27
3.6 Mode-Coupling Theory 29
3.7 Summary 30
viii CONTENTS
4 Relationship between Theory and Experiment 32
4.1 Introduction 32
4.2 Dynamic Light Scattering: Probe of Density Fluctuation at Long Length
Scales 34
4.3 Magnetic Resonance Experiments: Probe of Single-Particle
Dynamics 36
4.4 Kerr Relaxation 38
4.5 Dielectric Relaxation 38
4.6 Fluorescence Depolarization 39
4.7 Solvation Dynamics (Time-Dependent Fluorescence Stokes Shift) 40
4.8 Neutron Scattering: Coherent and Incoherent 41
4.9 Raman Line-Shape Measurements 43
4.10 Coherent Anti-Stokes Raman Scattering (CARS) 45
4.11 Echo Techniques 45
4.12 Ultrafast Chemical Reactions 47
4.13 Fluorescence Quenching 47
4.14 Two-Dimensional Infrared (2D-IR) Spectroscopy 48
4.15 Single-Molecule Spectroscopy 49
4.16 Summary 49
5 Orientational and Dielectric Relaxation 51
5.1 Introduction 51
5.2 Equilibrium and Time-Dependent Orientational Correlation
Functions 55
5.3 Relationship with Experimental Observables 57
5.4 Molecular Hydrodynamic Description of Orientational Motion 57
5.4.1 The Equations of Motion 58
5.4.2 Limiting Situations 59
5.5 Markovian Theory of Collective Orientational Relaxation: Berne
Treatment 59
5.5.1 Generalized Smoluchowski Equation Description 60
5.5.2 Solution by Spherical Harmonie Expansion 62
5.5.3 Relaxation ofLongitudinal and Transverse Components 64
5.5.4 Molecular Theory of Dielectric Relaxation 64
5.5.5 Hidden Role of Translational Motion in Orientational
Relaxation 65
5.5.6 Orientational de Gennes Narrowing at Intermediate
WaveNumbers 66
5.5.7 Reduction to the Continuum Limit 67
5.6 Memory Effects in Orientational Relaxation 68
5.7 Relationship between Macroscopic and Microscopic Orientational
Relaxations 70
5.8 The Special Case of Orientational Relaxation of Water 72
5.9 Lattice Models of Orientational Relaxation 74
5.10 Nonassociated Liquids 75
5.11 Summary 76
CONTENTS a
6 Solvation Dynamics in Dipolar Liquid 78
6.1 Introduction 78
6.2 Physical Concepts and Measurement 79
6.2.1 Measuring Ultrafast, Sub-lOOfsDecay 83
6.3 Phenomenological Theories: Continuum-Model Descriptions 86
6.3.1 Homogeneous Dielectric Models 86
6.3.2 Inhomogeneous Dielectric Models 89
6.3.3 Dynamic Exchange Model 91
6.4 Experimental Results: A Chronological Overview 93
6.4.1 Discovery of Multiexponential Solvation Dynamics:
Phase-I (1980-1990) 93
6.4.2 Discovery of Subpicosecond Ultrafast Solvation Dynamics:
Phase-II (1990-2000) 94
6.4.3 Solvation Dynamics in Complex Systems: Phase-HI (2000-) 95
6.5 Microscopic Theories 97
6.5.1 Molecular Hydrodynamics Description 97
6.5.2 Polarization and Dielectric Relaxation of Pure Liquid 98
6.5.2.1 Effects of Translational Diffusion in Solvation
Dynamics 98
6.6 Simple Idealized Models 100
6.6.1 Overdamped Solvation: Brownian Dipolar Lattice 101
6.6.2 Underdamped Solvation: Stockmayer Liquid 102
6.7 Solvation Dynamics in Water, Acetonitrile, and Methanol Revisited 102
6.7.1 The Sub-lOOfs Ultrafast Component: Microscopic Origin 104
6.8 Effects of Solvation on Chemical Processes in the Solution Phase 106
6.8.1 Limiting Ionic Conductivity of Electrolyte Solutions: Control of a
Slow Phenomenon by Ultrafast Dynamics 107
6.8.2 Effects of Ultrafast Solvation in Electron-Transfer Reactions 107
6.8.3 Nonequilibrium Solvation Effects in Chemical Reactions 107
6.8.3.1 Strong Solvent Forces 109
6.8.3.2 Weak Solvent Forces 110
6.9 Solvation Dynamics in Several Related Systems 111
6.9.1 Solvation in Aqueous Electrolyte Solutions 111
6.9.2 Dynamics of Electron Solvation 111
6.9.3 Solvation Dynamics in Supercritical Fluids 112
6.9.4 Nonpolar Solvation Dynamics 112
6.10 Computer Simulation Studies: Simple and Complex Systems 113
6.10.1 Aqueous Micelles 114
6.10.2 Water Pool in Reverse Micelles 114
6.10.3 Protein Hydration Layer 114
6.10.4 DNA Groove Hydration Layer 115
6.11 Summary 115
7 Activated Barrier-Crossing Dynamics in Liquids 117
7.1 Introduction 117
7.2 Microscopic Aspects 119
x CONTENTS
7.2.1 Stochastic Models: Understanding from Eigenvalue Analysis 119
7.2.2 Validity of a Rate-Law Description: Role of Macroscopic
Fluctuations 122
7.2.3 Time-Correlation-FunctionApproach: Separation ofTransient
Behavior from Rate Law 124
7.3 Transition-State Theory 126
7.4 Frictional Effects on Barrier-Crossing Rate in Solution:
Kramers Theory 127
7.4.1 Low-Friction Limit 129
7.4.2 Limitations of Kramers Theory 130
7.4.3 Comparison of Kramers Theory with Experiments 131
7.4.4 Comparison of Kramers Theory with Computer Simulations 132
7.5 Memory Effects in Chemical Reactions: Grote-Hynes Generalization of
Kramers Theory 132
7.5.1 FrequencyDependenceofFriction: General Aspects 138
7.5.1.1 Frequency-Dependent Friction from
Hydrodynamics 138
7.5.1.2 Frequency-Dependent Friction from Mode-Coupling
Theory 140
7.5.2 Comparison of Grote-Hynes Theory with Experiments and
Computer Simulations 142
7.6 Variational Transition-State Theory 143
7.7 Multidimensional Reaction Surface 144
7.7.1 Multidimensional Kramers Theory 145
7.8 Transition Path Sampling 146
7.9 Quantum Transition-State Theory 148
7.10 Summary 149
Appendix 150
8 Barrierless Reactions in Solution 155
8.1 Introduction 155
8.2 Standard Model of Barrierless Reactions 158
8.2.1 Exactiy Solvable Models for Photochemical Reactions 159
8.2.1.1 Oster-Nishijima Model 160
8.2.1.2 Staircase Model 161
8.2.1.3 Pinhole Sink Model 162
8.2.2 Approximate Solutions ofRealistic Models 164
8.2.2.1 Delta Function Sink 164
8.2.2.2 GaussianSink 165
8.3 Inertial Effects in Barrierless Reactions: Viscosity Turnover of Rate 166
8.4 Memory Effects in Barrierless Reactions 170
8.5 Unusual Features of Barrierless Chemical Reactions 172
8.5.1 Excitation Wavelength Dependence 172
8.5.2 Negative Activation Energy 172
8.6 Multidimensional Reaction Potential Energy Surface 174
8.7 Analysis of Experimental Results 174
CONTENTS xi
8.7.1 Photoisomerization and Ground-State Potential Energy
Surface 174
8.7.2 Decay Dynamics of Rhodopsin and Isorhodopsin 175
8.7.3 Conflicting Crystal Violet Isomerization Mechanism 177
8.8 Summary 177
9 Dynamical Disorder, Geometrie Bottlenecks, and Diffusion-Controlled
Bimolecular Reactions 180
9.1 Introduction 180
9.2 Passage through Geometrie BotÜenecks 181
9.2.1 Diffusion in a Two-Dimensional Periodic Channel 181
9.2.2 Diffusion in a Random Lorentz Gas 183
9.3 Dynamical Disorder 184
9.4 Diffusion over a Rugged Energy Landscape 186
9.5 Diffusion-ControEed Bimolecular Reactions 190
9.6 Summary 193
10 Electron-Transfer Reactions 195
10.1 Introduction 195
10.2 Classification of Electron-Transfer Reactions 196
10.2.1 Classification Based on Ligand Participation 196
10.2.2 Classification Based on Interactions between Reactant and
Product Potential Energy Surfaces 196
10.3 Marcus Theory 197
10.3.1 Reaction Coordinate (RC) 198
10.3.2 Free-Energy Surfaces: Force Constant of Polarization
Fluctuation 200
10.3.3 Derivation ofETR Rate 203
10.3.4 ExperimentalVerificationofthe Marcus Theory 206
10.4 Dynamical Solvent Effects on ETRs (One-Dimensional
Descriptions) 208
10.5 Role of Vibrational Modes in Weakening Solvent Dependence 210
10.5.1 Role of Classical Intramolecular Vibrational Modes:
Sumi-Marcus Theory 210
10.5.2 Role ofHigh-Frequency Vibration Modes 213
10.5.3 Hybrid Model of ETR: Crossover from Solvent to Vibrational
Control 215
10.6 Theoretical Formulation of Multidimensional Electron Transfer 216
10.7 Effects of Ultrafast Solvation on Electron-Transfer Reactions 220
10.7.1 Absence of Significant Dynamic Solvent Effects on ETR in Water,
Acetonitrile, and Methanol 220
10.8 Summary 221
Appendix 222
11 Förster (or, Fluorescence) Resonance Energy Transfer (FRET) 226
11.1 Introduction 226
11.2 A Brief Historical Perspective 229
11.3 Derivation of Förster Expression 230
11.3.1 Expressions for Emission (or Fluorescence) Spectrum 234
xii CONTENTS
11.3.2 Absorption Spectrum 237
11.3.3 The Final Förster Expression 238
11.4 Applications of Förster Theory to Chemistry, Biology, and Materials
Science 239
11.4.1 FRET-Based Glucose Sensor 239
11.4.2 FRET and Macromolecular Dynamics 239
11.4.3 FRET and Single-Molecule Spectroscopy 243
11.4.4 Beyond Organic Dyes as Donor-Acceptor Pairs 247
11.4.5 FRET and Conjugated Polymers 249
11.5 Beyond Förster Formalism 252
11.5.1 Orientation Factor 252
11.5.2 Point-Dipole Approximation 253
11.5.3 Contribution ofOpticallyDark States 254
11.6 Summary 257
12 Vibrational-Energy Relaxation 259
12.1 Introduction 259
12.2 Isolated Binary Collision (IBC) Model 261
12.3 Landau-Teller Expression: The Classical Limit 263
12.4 Weak-Coupling Model: Time-Correlation-Function Representation
ofTransitionProbability 265
12.5 Vibrational Relaxation at High Frequency: Quantum Effects 268
12.6 Experimental Studies of Vibrational-Energy Relaxation 271
12.7 Computer-Simulation Studies of Vibrational-Energy Relaxation 272
12.7.1 Vibrational-Energy Relaxation of Water 272
12.7.2 Vibrational-Energy Relaxation in Liquid Oxygen
andNitrogen 274
12.8 Quantum Interference Effects on Vibrational-Energy Relaxation in a
Three-Level System: Breakdown of the Rate Equation Description 275
12.9 Vibrational Life Time Dynamics in Supercritical Fluids 277
12.10 Summary 279
13 Vibrational-Phase Relaxation 280
13.1 Introduction 280
13.2 Kubo-Oxtoby Theory of Vibrational Line Shapes 282
13.3 Homogeneous vs. Inhomogeneous Linewidths 287
13.4 Relative Role of the Attractive and Repulsive Forces 289
13.5 Vibration-Rotation Coupling 289
13.6 Experimental Results of Vibrational-Phase Relaxation 290
13.6.1 Semiquantitative Aspects ofDephasing Rates in Solution 291
13.6.2 Subquadratic Quantum Number Dependence 291
13.7 Vibrational Dephasing Near the Gas-Liquid Critical Point 292
13.8 Multidimensional IR Spectroscopy 292
13.9 Summary 294
14 Epilogue 296
Index 298
|
any_adam_object | 1 |
author | Bagchi, Biman 1954- |
author_GND | (DE-588)1023178826 |
author_facet | Bagchi, Biman 1954- |
author_role | aut |
author_sort | Bagchi, Biman 1954- |
author_variant | b b bb |
building | Verbundindex |
bvnumber | BV040365237 |
callnumber-first | Q - Science |
callnumber-label | QD543 |
callnumber-raw | QD543 |
callnumber-search | QD543 |
callnumber-sort | QD 3543 |
callnumber-subject | QD - Chemistry |
classification_rvk | VE 5800 |
ctrlnum | (OCoLC)795906997 (DE-599)BVBBV040365237 |
dewey-full | 538/.3 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 538 - Magnetism |
dewey-raw | 538/.3 |
dewey-search | 538/.3 |
dewey-sort | 3538 13 |
dewey-tens | 530 - Physics |
discipline | Chemie / Pharmazie Physik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01398nam a2200385 c 4500</leader><controlfield tag="001">BV040365237</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20140324 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">120814s2012 xxud||| |||| 00||| eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">2011031643</subfield></datafield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">GBB217289</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780199863327</subfield><subfield code="c">hardcover : alk. paper</subfield><subfield code="9">978-0-19-986332-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0199863326</subfield><subfield code="c">hardcover : alk. paper</subfield><subfield code="9">0-19-986332-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)795906997</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV040365237</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-11</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-703</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD543</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">538/.3</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">VE 5800</subfield><subfield code="0">(DE-625)147124:253</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bagchi, Biman</subfield><subfield code="d">1954-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1023178826</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Molecular relaxation in liquids</subfield><subfield code="c">Biman Bagchi</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York [u.a.]</subfield><subfield code="b">Oxford Univ. Press</subfield><subfield code="c">2012</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIV, 312 S.</subfield><subfield code="b">graph. Darst.</subfield><subfield code="c">25 cm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Relaxation phenomena</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Liquids</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=025218973&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-025218973</subfield></datafield></record></collection> |
id | DE-604.BV040365237 |
illustrated | Illustrated |
indexdate | 2024-07-10T00:22:34Z |
institution | BVB |
isbn | 9780199863327 0199863326 |
language | English |
lccn | 2011031643 |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-025218973 |
oclc_num | 795906997 |
open_access_boolean | |
owner | DE-11 DE-20 DE-703 |
owner_facet | DE-11 DE-20 DE-703 |
physical | XIV, 312 S. graph. Darst. 25 cm |
publishDate | 2012 |
publishDateSearch | 2012 |
publishDateSort | 2012 |
publisher | Oxford Univ. Press |
record_format | marc |
spelling | Bagchi, Biman 1954- Verfasser (DE-588)1023178826 aut Molecular relaxation in liquids Biman Bagchi New York [u.a.] Oxford Univ. Press 2012 XIV, 312 S. graph. Darst. 25 cm txt rdacontent n rdamedia nc rdacarrier Includes bibliographical references and index Relaxation phenomena Liquids HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=025218973&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Bagchi, Biman 1954- Molecular relaxation in liquids Relaxation phenomena Liquids |
title | Molecular relaxation in liquids |
title_auth | Molecular relaxation in liquids |
title_exact_search | Molecular relaxation in liquids |
title_full | Molecular relaxation in liquids Biman Bagchi |
title_fullStr | Molecular relaxation in liquids Biman Bagchi |
title_full_unstemmed | Molecular relaxation in liquids Biman Bagchi |
title_short | Molecular relaxation in liquids |
title_sort | molecular relaxation in liquids |
topic | Relaxation phenomena Liquids |
topic_facet | Relaxation phenomena Liquids |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=025218973&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT bagchibiman molecularrelaxationinliquids |