Nonlinear dispersive waves: asymptotic analysis and solitons
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Cambridge, UK
Cambridge University Press
2011
|
Schriftenreihe: | Cambridge texts in applied mathematics
|
Schlagworte: | |
Online-Zugang: | Cover image Inhaltsverzeichnis |
Beschreibung: | "The field of nonlinear dispersive waves has developed enormously since the work of Stokes, Boussinesq and Korteweg-de Vries (KdV) in the nineteenth century. In the 1960s, researchers developed effective asymptotic methods for deriving nonlinear wave equations, such as the KdV equation, governing a broad class of physical phenomena that admit special solutions including those commonly known as solitons. This book describes the underlying approximation techniques and methods for finding solutions to these and other equations. The concepts and methods covered include wave dispersion, asymptotic analysis, perturbation theory, the method of multiple scales, deep and shallow water waves, nonlinear optics including fiber optic communications, mode-locked lasers and dispersion-managed wave phenomena. Most chapters feature exercise sets, making the book suitable for advanced courses or for self-directed learning. Graduate students and researchers will find this an excellent entry to a thriving area at the intersection of applied mathematics, engineering and physical science"-- Provided by publisher. Includes bibliographical references and index |
Beschreibung: | XIV, 348 S. graph. Darst. 23 cm |
ISBN: | 9781107012547 1107012546 9781107664104 1107664101 |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV040360274 | ||
003 | DE-604 | ||
005 | 20220215 | ||
007 | t | ||
008 | 120810s2011 xxkd||| |||| 00||| eng d | ||
010 | |a 2011023918 | ||
020 | |a 9781107012547 |c hardback |9 978-1-10-701254-7 | ||
020 | |a 1107012546 |c hardback |9 1-10-701254-6 | ||
020 | |a 9781107664104 |c pbk. |9 978-1-10-766410-4 | ||
020 | |a 1107664101 |c pbk. |9 1-10-766410-1 | ||
035 | |a (OCoLC)759823833 | ||
035 | |a (DE-599)BVBBV040360274 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
044 | |a xxk |c GB | ||
049 | |a DE-188 | ||
050 | 0 | |a QC174.26.W28 | |
082 | 0 | |a 530.15/5355 | |
084 | |a SK 560 |0 (DE-625)143246: |2 rvk | ||
084 | |a SK 540 |0 (DE-625)143245: |2 rvk | ||
100 | 1 | |a Ablowitz, Mark J. |d 1945- |e Verfasser |0 (DE-588)143611844 |4 aut | |
245 | 1 | 0 | |a Nonlinear dispersive waves |b asymptotic analysis and solitons |c Mark J. Ablowitz |
264 | 1 | |a Cambridge, UK |b Cambridge University Press |c 2011 | |
300 | |a XIV, 348 S. |b graph. Darst. |c 23 cm | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Cambridge texts in applied mathematics | |
500 | |a "The field of nonlinear dispersive waves has developed enormously since the work of Stokes, Boussinesq and Korteweg-de Vries (KdV) in the nineteenth century. In the 1960s, researchers developed effective asymptotic methods for deriving nonlinear wave equations, such as the KdV equation, governing a broad class of physical phenomena that admit special solutions including those commonly known as solitons. This book describes the underlying approximation techniques and methods for finding solutions to these and other equations. The concepts and methods covered include wave dispersion, asymptotic analysis, perturbation theory, the method of multiple scales, deep and shallow water waves, nonlinear optics including fiber optic communications, mode-locked lasers and dispersion-managed wave phenomena. Most chapters feature exercise sets, making the book suitable for advanced courses or for self-directed learning. Graduate students and researchers will find this an excellent entry to a thriving area at the intersection of applied mathematics, engineering and physical science"-- Provided by publisher. | ||
500 | |a Includes bibliographical references and index | ||
650 | 4 | |a Wave equation | |
650 | 4 | |a Nonlinear waves | |
650 | 4 | |a Solitons | |
650 | 4 | |a Asymptotic expansions | |
856 | 4 | |u http://assets.cambridge.org/97811070/12547/cover/9781107012547.jpg |3 Cover image | |
856 | 4 | 2 | |m LoC Fremddatenuebernahme |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=025214132&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-025214132 |
Datensatz im Suchindex
_version_ | 1804149401380192256 |
---|---|
adam_text | NONLINEAR DISPERSIVE WAVES
/ ABLOWITZ, MARK J.
: 2011
TABLE OF CONTENTS / INHALTSVERZEICHNIS
PREFACE; ACKNOWLEDGEMENTS; PART I. FUNDAMENTALS AND BASIC APPLICATIONS:
1. INTRODUCTION; 2. LINEAR AND NONLINEAR WAVE EQUATIONS; 3. ASYMPTOTIC
ANALYSIS OF WAVE EQUATIONS; 4. PERTURBATION ANALYSIS; 5. WATER WAVES AND
KDV TYPE EQUATIONS; 6. NONLINEAR SCHROEDINGER MODELS AND WATER WAVES; 7.
NONLINEAR SCHROEDINGER MODELS IN NONLINEAR OPTICS; PART II. INTEGRABILITY
AND SOLITONS: 8. SOLITONS AND INTEGRABLE EQUATIONS; 9. INVERSE
SCATTERING TRANSFORM FOR THE KDV EQUATION; PART III. NOVEL APPLICATIONS
OF NONLINEAR WAVES: 10. COMMUNICATIONS; 11. MODE-LOCKED LASERS; 12.
NONLINEAR PHOTONIC LATTICES; REFERENCES; INDEX.
DIESES SCHRIFTSTUECK WURDE MASCHINELL ERZEUGT.
|
any_adam_object | 1 |
author | Ablowitz, Mark J. 1945- |
author_GND | (DE-588)143611844 |
author_facet | Ablowitz, Mark J. 1945- |
author_role | aut |
author_sort | Ablowitz, Mark J. 1945- |
author_variant | m j a mj mja |
building | Verbundindex |
bvnumber | BV040360274 |
callnumber-first | Q - Science |
callnumber-label | QC174 |
callnumber-raw | QC174.26.W28 |
callnumber-search | QC174.26.W28 |
callnumber-sort | QC 3174.26 W28 |
callnumber-subject | QC - Physics |
classification_rvk | SK 560 SK 540 |
ctrlnum | (OCoLC)759823833 (DE-599)BVBBV040360274 |
dewey-full | 530.15/5355 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530.15/5355 |
dewey-search | 530.15/5355 |
dewey-sort | 3530.15 45355 |
dewey-tens | 530 - Physics |
discipline | Physik Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02869nam a2200469zc 4500</leader><controlfield tag="001">BV040360274</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20220215 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">120810s2011 xxkd||| |||| 00||| eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">2011023918</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107012547</subfield><subfield code="c">hardback</subfield><subfield code="9">978-1-10-701254-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1107012546</subfield><subfield code="c">hardback</subfield><subfield code="9">1-10-701254-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107664104</subfield><subfield code="c">pbk.</subfield><subfield code="9">978-1-10-766410-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1107664101</subfield><subfield code="c">pbk.</subfield><subfield code="9">1-10-766410-1</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)759823833</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV040360274</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxk</subfield><subfield code="c">GB</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-188</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC174.26.W28</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530.15/5355</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 560</subfield><subfield code="0">(DE-625)143246:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 540</subfield><subfield code="0">(DE-625)143245:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ablowitz, Mark J.</subfield><subfield code="d">1945-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)143611844</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Nonlinear dispersive waves</subfield><subfield code="b">asymptotic analysis and solitons</subfield><subfield code="c">Mark J. Ablowitz</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge, UK</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2011</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIV, 348 S.</subfield><subfield code="b">graph. Darst.</subfield><subfield code="c">23 cm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Cambridge texts in applied mathematics</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">"The field of nonlinear dispersive waves has developed enormously since the work of Stokes, Boussinesq and Korteweg-de Vries (KdV) in the nineteenth century. In the 1960s, researchers developed effective asymptotic methods for deriving nonlinear wave equations, such as the KdV equation, governing a broad class of physical phenomena that admit special solutions including those commonly known as solitons. This book describes the underlying approximation techniques and methods for finding solutions to these and other equations. The concepts and methods covered include wave dispersion, asymptotic analysis, perturbation theory, the method of multiple scales, deep and shallow water waves, nonlinear optics including fiber optic communications, mode-locked lasers and dispersion-managed wave phenomena. Most chapters feature exercise sets, making the book suitable for advanced courses or for self-directed learning. Graduate students and researchers will find this an excellent entry to a thriving area at the intersection of applied mathematics, engineering and physical science"-- Provided by publisher.</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Wave equation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nonlinear waves</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Solitons</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Asymptotic expansions</subfield></datafield><datafield tag="856" ind1="4" ind2=" "><subfield code="u">http://assets.cambridge.org/97811070/12547/cover/9781107012547.jpg</subfield><subfield code="3">Cover image</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">LoC Fremddatenuebernahme</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=025214132&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-025214132</subfield></datafield></record></collection> |
id | DE-604.BV040360274 |
illustrated | Illustrated |
indexdate | 2024-07-10T00:22:27Z |
institution | BVB |
isbn | 9781107012547 1107012546 9781107664104 1107664101 |
language | English |
lccn | 2011023918 |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-025214132 |
oclc_num | 759823833 |
open_access_boolean | |
owner | DE-188 |
owner_facet | DE-188 |
physical | XIV, 348 S. graph. Darst. 23 cm |
publishDate | 2011 |
publishDateSearch | 2011 |
publishDateSort | 2011 |
publisher | Cambridge University Press |
record_format | marc |
series2 | Cambridge texts in applied mathematics |
spelling | Ablowitz, Mark J. 1945- Verfasser (DE-588)143611844 aut Nonlinear dispersive waves asymptotic analysis and solitons Mark J. Ablowitz Cambridge, UK Cambridge University Press 2011 XIV, 348 S. graph. Darst. 23 cm txt rdacontent n rdamedia nc rdacarrier Cambridge texts in applied mathematics "The field of nonlinear dispersive waves has developed enormously since the work of Stokes, Boussinesq and Korteweg-de Vries (KdV) in the nineteenth century. In the 1960s, researchers developed effective asymptotic methods for deriving nonlinear wave equations, such as the KdV equation, governing a broad class of physical phenomena that admit special solutions including those commonly known as solitons. This book describes the underlying approximation techniques and methods for finding solutions to these and other equations. The concepts and methods covered include wave dispersion, asymptotic analysis, perturbation theory, the method of multiple scales, deep and shallow water waves, nonlinear optics including fiber optic communications, mode-locked lasers and dispersion-managed wave phenomena. Most chapters feature exercise sets, making the book suitable for advanced courses or for self-directed learning. Graduate students and researchers will find this an excellent entry to a thriving area at the intersection of applied mathematics, engineering and physical science"-- Provided by publisher. Includes bibliographical references and index Wave equation Nonlinear waves Solitons Asymptotic expansions http://assets.cambridge.org/97811070/12547/cover/9781107012547.jpg Cover image LoC Fremddatenuebernahme application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=025214132&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Ablowitz, Mark J. 1945- Nonlinear dispersive waves asymptotic analysis and solitons Wave equation Nonlinear waves Solitons Asymptotic expansions |
title | Nonlinear dispersive waves asymptotic analysis and solitons |
title_auth | Nonlinear dispersive waves asymptotic analysis and solitons |
title_exact_search | Nonlinear dispersive waves asymptotic analysis and solitons |
title_full | Nonlinear dispersive waves asymptotic analysis and solitons Mark J. Ablowitz |
title_fullStr | Nonlinear dispersive waves asymptotic analysis and solitons Mark J. Ablowitz |
title_full_unstemmed | Nonlinear dispersive waves asymptotic analysis and solitons Mark J. Ablowitz |
title_short | Nonlinear dispersive waves |
title_sort | nonlinear dispersive waves asymptotic analysis and solitons |
title_sub | asymptotic analysis and solitons |
topic | Wave equation Nonlinear waves Solitons Asymptotic expansions |
topic_facet | Wave equation Nonlinear waves Solitons Asymptotic expansions |
url | http://assets.cambridge.org/97811070/12547/cover/9781107012547.jpg http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=025214132&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT ablowitzmarkj nonlineardispersivewavesasymptoticanalysisandsolitons |