Adaptive numerical solution of PDEs:
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Berlin ; Boston
de Gruyter
[2012]
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | Includes bibliographical references and index |
Beschreibung: | xi, 421 Seiten Illustrationen, Diagramme |
ISBN: | 9783110283105 9783110283112 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV040301749 | ||
003 | DE-604 | ||
005 | 20241112 | ||
007 | t| | ||
008 | 120709s2012 xx a||| |||| 00||| eng d | ||
020 | |a 9783110283105 |c Print |9 978-3-11-028310-5 | ||
020 | |a 9783110283112 |9 978-3-11-028311-2 | ||
035 | |a (OCoLC)853206708 | ||
035 | |a (DE-599)BVBBV040301749 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-739 |a DE-188 |a DE-19 |a DE-20 |a DE-634 |a DE-83 |a DE-91G |a DE-862 | ||
082 | 0 | |a 515/.3533 | |
084 | |a SK 500 |0 (DE-625)143243: |2 rvk | ||
084 | |a SK 540 |0 (DE-625)143245: |2 rvk | ||
084 | |a SK 920 |0 (DE-625)143272: |2 rvk | ||
084 | |a 65Mxx |2 msc/2010 | ||
084 | |a 65-01 |2 msc/2010 | ||
084 | |a 65Nxx |2 msc/2010 | ||
084 | |a MAT 671f |2 stub | ||
100 | 1 | |a Deuflhard, Peter |d 1944-2019 |0 (DE-588)108205983 |4 aut | |
245 | 1 | 0 | |a Adaptive numerical solution of PDEs |c Peter Deuflhard ; Martin Weiser |
264 | 1 | |a Berlin ; Boston |b de Gruyter |c [2012] | |
264 | 4 | |c © 2012 | |
300 | |a xi, 421 Seiten |b Illustrationen, Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
500 | |a Includes bibliographical references and index | ||
650 | 4 | |a Differential equations, Elliptic / Numerical solutions / Textbooks | |
650 | 4 | |a Differential equations, Parabolic / Numerical solutions / Textbooks | |
650 | 0 | 7 | |a Partielle Differentialgleichung |0 (DE-588)4044779-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Adaptives Verfahren |0 (DE-588)4310560-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Numerisches Verfahren |0 (DE-588)4128130-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Partielle Differentialgleichung |0 (DE-588)4044779-0 |D s |
689 | 0 | 1 | |a Numerisches Verfahren |0 (DE-588)4128130-5 |D s |
689 | 0 | 2 | |a Adaptives Verfahren |0 (DE-588)4310560-9 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Weiser, Martin |d 1970- |0 (DE-588)123252040 |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-3-11-028311-2 |
856 | 4 | 2 | |m Digitalisierung UB Passau |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=025156768&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-025156768 |
Datensatz im Suchindex
DE-BY-862_location | 2000 |
---|---|
DE-BY-FWS_call_number | 2000/SK 920 D485 |
DE-BY-FWS_katkey | 579696 |
DE-BY-FWS_media_number | 083000513421 |
_version_ | 1817386674243502080 |
adam_text |
Contents
Preface
v
Outline 1
1
Elementary Partial Differential Equations
5
1.1
Laplace and
Poisson
Equation
. 5
1.1.1
Boundary Value Problems
. 6
1.1.2
Initial Value Problem
. 10
1.1.3
Eigenvalue Problem
. 12
1.2
Diffusion Equation
. 15
1.3
Wave Equation
. 18
1.4 Schrödinger
Equation
. 23
1.5
Helmholtz Equation
. 26
1.5.1
Boundary Value Problems
. 26
1.5.2
Time-harmonic Differential Equations
. 27
1.6
Classification
. 29
1.7
Exercises
. 31
2
Partial Differential Equations in Science and Technology
34
2.1
Electrodynamics
. 34
2.1.1
Maxwell Equations
. 34
2.1.2
Optical Model Hierarchy
. 37
2.2
Fluid Dynamics
. 40
2.2.1
Euler
Equations
. 41
2.2.2
Navier-Stokes Equations
. 44
2.2.3
Prandtl's Boundary Layer
. 49
2.2.4
Porous Media Equation
. 51
2.3
Elastomechanics
. 52
2.3.1
Basic Concepts of Nonlinear Elastomechanics
. 52
2.3.2
Linear Elastomechanics
. 56
2.4
Exercises
. 59
3
Finite
Difference Methods for
Poisson
Problems
62
3.1
Discretization of Standard Problem
. 62
3.1.1
Discrete Boundary Value Problems
. 63
3.1.2
Discrete Eigenvalue Problem
. 68
3.2
Approximation Theory on Uniform Grids
. 71
3.2.1
Discretization Error in L2
. 73
3.2.2
Discretization Error in L°°
. 76
3.3
Discretization on
Nonuniform
Grids
. 78
3.3.1
One-dimensional Special Case
. 78
3.3.2
Curved Boundaries
. 80
3.4
Exercises
. 83
4
Galerkin Methods
86
4.1
General Scheme
. 86
4.1.1
Weak Solutions
. 86
4.1.2 Ritz
Minimization for Boundary Value Problems
. 89
4.1.3
Rayleigh-Ritz Minimization for Eigenvalue Problems
. 93
4.2
Spectral Methods
. 95
4.2.1
Realization by Orthogonal Systems
. 96
4.2.2
Approximation Theory
. 100
4.2.3
Adaptive Spectral Methods
. 103
4.3
Finite Element Methods
. 108
4.3.1
Meshes and Finite Element Spaces
. 108
4.3.2
Elementary Finite Elements
.
Ill
4.3.3
Realization of Finite Elements
. 121
4.4
Approximation Theory for Finite Elements
. 128
4.4.1
Boundary Value Problems
. 128
4.4.2
Eigenvalue Problems
. 131
4.4.3
Angle Condition for
Nonuniform
Meshes
. 136
4.5
Exercises
. 139
5
Numerical Solution of Linear Elliptic Grid Equations
143
5.1
Direct Elimination Methods
. 144
5.1.1
Symbolic Factorization
. 145
5.1.2
Frontal Solvers
. 147
5.2
Matrix Decomposition Methods
. 150
5.2.1
Jacobi Method
. 152
5.2.2
Gauss-Seidel Method
. 154
5.3
Conjugate
Gradient
Method
.156
5.3.1
CG-Method as Galerkin Method
.156
5.3.2
Preconditioning
.159
5.3.3
Adaptive PCG-method
.163
5.3.4
A CG-variant for Eigenvalue Problems
.165
5.4
Smoothing Property of Iterative Solvers
.170
5.4.1
Illustration for the
Poisson
Model Problem
.170
5.4.2
Spectral Analysis for Jacobi Method
.174
5.4.3
Smoothing Theorems
.175
5.5
Iterative Hierarchical Solvers
.180
5.5.1
Classical Multigrid Methods
.182
5.5.2
Hierarchical-basis Method
.190
5.5.3
Comparison with Direct Hierarchical Solvers
.193
5.6
Power Optimization of a Darrieus Wind Generator
.194
5.7
Exercises
.200
Construction of Adaptive Hierarchical Meshes
203
6.1
A Posteriori Error Estimators
.203
6.1.1
Residual Based Error Estimator
.206
6.1.2
Triangle Oriented Error Estimators
.211
6.1.3
Gradient Recovery
.215
6.1.4
Hierarchical Error Estimators
.219
6.1.5
Goal-oriented Error Estimation
.222
6.2
Adaptive Mesh Refinement
.223
6.2.1
Equilibration of Local Discretization Errors
.224
6.2.2
Refinement Strategies
.229
6.2.3
Choice of Solvers on Adaptive Hierarchical Meshes
.233
6.3
Convergence on Adaptive Meshes
.233
6.3.1
A Convergence Proof
.234
6.3.2
An Example with a Reentrant Corner
.236
6.4
Design of a Plasmon-Polariton Waveguide
.240
6.5
Exercises
.244
Adaptive Multigrid Methods for Linear Elliptic Problems
246
7.1
Subspace Correction Methods
.246
7.1.1
Basic Principle
.247
7.1.2
Sequential Subspace Correction Methods
.250
7.1.3
Parallel Subspace Correction Methods
.255
7.1.4
Overlapping Domain Decomposition Methods
.259
7.1.5
Higher-order Finite Elements
.266
7.2 Hierarchical Space
Decompositions
.271
7.2.1
Decomposition into Hierarchical Bases
.272
7.2.2
L2-orthogonal Decomposition: BPX
.278
7.3
Multigrid Methods Revisited
. 282
7.3.1
Additive Multigrid Methods
. 282
7.3.2
Multiplicative Multigrid Methods
. 286
7.4
Cascadic Multigrid Methods
. 289
7.4.1
Theoretical Derivation
. 289
7.4.2
Adaptive Realization
. 295
7.5
Eigenvalue Problem Solvers
. 300
7.5.1
Linear Multigrid Method
. 301
7.5.2
Rayleigh Quotient Multigrid Method
. 303
7.6
Exercises
. 306
Adaptive Solution of Nonlinear Elliptic Problems
310
8.1
Discrete Newton Methods for Nonlinear Grid Equations
. 311
8.1.1
Exact Newton Methods
. 312
8.1.2
Inexact Newton-PCG Methods
. 316
8.2
Inexact Newton-Multigrid Methods
. 319
8.2.1
Hierarchical Grid Equations
. 319
8.2.2
Realization of Adaptive Algorithm
. 321
8.2.3
An Elliptic Problem Without a Solution
. 325
8.3
Operation Planning in Facial Surgery
. 328
8.4
Exercises
. 331
Adaptive Integration of Parabolic Problems
333
9.1
Time Discretization of Stiff Differential Equations
. 333
9.1.1
Linear Stability Theory
. 334
9.1.2
Linearly Implicit One-step Methods
. 340
9.1.3
Order Reduction
. 347
9.2
Space-time Discretization of Parabolic PDEs
. 353
9.2.1
Adaptive Method of Lines
. 354
9.2.2
Adaptive Method of Time Layers
. 362
9.2.3
Goal-oriented Error Estimation
. 371
9.3
Electrical Excitation of the Heart Muscle
. 374
9.3.1
Mathematical Models
. 374
9.3.2
Numerical Simulation
. 375
9.4
Exercises
. 378
A Appendix
380
A.I Fourier Analysis and Fourier Transform
.380
A.2 Differential Operators in K3
.381
A.3 Integral Theorems
.383
A.4 Delta-Distribution and Green's Functions
.387
A.5 Sobolev Spaces
.392
A.6 Optimality Conditions
.397
В
Software
398
B.I Adaptive Finite Element Codes
.398
B.2 Direct Solvers
.399
B.3 Nonlinear Solvers
.399
Bibliography
401
Index
415 |
any_adam_object | 1 |
author | Deuflhard, Peter 1944-2019 Weiser, Martin 1970- |
author_GND | (DE-588)108205983 (DE-588)123252040 |
author_facet | Deuflhard, Peter 1944-2019 Weiser, Martin 1970- |
author_role | aut aut |
author_sort | Deuflhard, Peter 1944-2019 |
author_variant | p d pd m w mw |
building | Verbundindex |
bvnumber | BV040301749 |
classification_rvk | SK 500 SK 540 SK 920 |
classification_tum | MAT 671f |
ctrlnum | (OCoLC)853206708 (DE-599)BVBBV040301749 |
dewey-full | 515/.3533 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515/.3533 |
dewey-search | 515/.3533 |
dewey-sort | 3515 43533 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 c 4500</leader><controlfield tag="001">BV040301749</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20241112</controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">120709s2012 xx a||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110283105</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-11-028310-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110283112</subfield><subfield code="9">978-3-11-028311-2</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)853206708</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV040301749</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-739</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-862</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515/.3533</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 500</subfield><subfield code="0">(DE-625)143243:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 540</subfield><subfield code="0">(DE-625)143245:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 920</subfield><subfield code="0">(DE-625)143272:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">65Mxx</subfield><subfield code="2">msc/2010</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">65-01</subfield><subfield code="2">msc/2010</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">65Nxx</subfield><subfield code="2">msc/2010</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 671f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Deuflhard, Peter</subfield><subfield code="d">1944-2019</subfield><subfield code="0">(DE-588)108205983</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Adaptive numerical solution of PDEs</subfield><subfield code="c">Peter Deuflhard ; Martin Weiser</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin ; Boston</subfield><subfield code="b">de Gruyter</subfield><subfield code="c">[2012]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2012</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xi, 421 Seiten</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations, Elliptic / Numerical solutions / Textbooks</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations, Parabolic / Numerical solutions / Textbooks</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Partielle Differentialgleichung</subfield><subfield code="0">(DE-588)4044779-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Adaptives Verfahren</subfield><subfield code="0">(DE-588)4310560-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Numerisches Verfahren</subfield><subfield code="0">(DE-588)4128130-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Partielle Differentialgleichung</subfield><subfield code="0">(DE-588)4044779-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Numerisches Verfahren</subfield><subfield code="0">(DE-588)4128130-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Adaptives Verfahren</subfield><subfield code="0">(DE-588)4310560-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Weiser, Martin</subfield><subfield code="d">1970-</subfield><subfield code="0">(DE-588)123252040</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-3-11-028311-2</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Passau</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=025156768&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-025156768</subfield></datafield></record></collection> |
id | DE-604.BV040301749 |
illustrated | Illustrated |
indexdate | 2024-12-03T04:03:14Z |
institution | BVB |
isbn | 9783110283105 9783110283112 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-025156768 |
oclc_num | 853206708 |
open_access_boolean | |
owner | DE-739 DE-188 DE-19 DE-BY-UBM DE-20 DE-634 DE-83 DE-91G DE-BY-TUM DE-862 DE-BY-FWS |
owner_facet | DE-739 DE-188 DE-19 DE-BY-UBM DE-20 DE-634 DE-83 DE-91G DE-BY-TUM DE-862 DE-BY-FWS |
physical | xi, 421 Seiten Illustrationen, Diagramme |
publishDate | 2012 |
publishDateSearch | 2012 |
publishDateSort | 2012 |
publisher | de Gruyter |
record_format | marc |
spellingShingle | Deuflhard, Peter 1944-2019 Weiser, Martin 1970- Adaptive numerical solution of PDEs Differential equations, Elliptic / Numerical solutions / Textbooks Differential equations, Parabolic / Numerical solutions / Textbooks Partielle Differentialgleichung (DE-588)4044779-0 gnd Adaptives Verfahren (DE-588)4310560-9 gnd Numerisches Verfahren (DE-588)4128130-5 gnd |
subject_GND | (DE-588)4044779-0 (DE-588)4310560-9 (DE-588)4128130-5 |
title | Adaptive numerical solution of PDEs |
title_auth | Adaptive numerical solution of PDEs |
title_exact_search | Adaptive numerical solution of PDEs |
title_full | Adaptive numerical solution of PDEs Peter Deuflhard ; Martin Weiser |
title_fullStr | Adaptive numerical solution of PDEs Peter Deuflhard ; Martin Weiser |
title_full_unstemmed | Adaptive numerical solution of PDEs Peter Deuflhard ; Martin Weiser |
title_short | Adaptive numerical solution of PDEs |
title_sort | adaptive numerical solution of pdes |
topic | Differential equations, Elliptic / Numerical solutions / Textbooks Differential equations, Parabolic / Numerical solutions / Textbooks Partielle Differentialgleichung (DE-588)4044779-0 gnd Adaptives Verfahren (DE-588)4310560-9 gnd Numerisches Verfahren (DE-588)4128130-5 gnd |
topic_facet | Differential equations, Elliptic / Numerical solutions / Textbooks Differential equations, Parabolic / Numerical solutions / Textbooks Partielle Differentialgleichung Adaptives Verfahren Numerisches Verfahren |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=025156768&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT deuflhardpeter adaptivenumericalsolutionofpdes AT weisermartin adaptivenumericalsolutionofpdes |
Inhaltsverzeichnis
Sonderstandort Fakultät
Signatur: |
2000 SK 920 D485 |
---|---|
Exemplar 1 | nicht ausleihbar Checked out – Rückgabe bis: 31.12.2099 Vormerken |