Numerical solution of algebraic Riccati equations:
This treatment of the basic theory of algebraic Riccati equations describes the classical as well as the more advanced algorithms for their solution in a manner that is accessible to both practitioners and scholars. It is the first book in which nonsymmetric algebraic Riccati equations are treated i...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Philadelphia, Pa.
Society for Industrial and Applied Mathematics (SIAM)
2011
|
Schriftenreihe: | Fundamentals of algorithms
9 |
Schlagworte: | |
Online-Zugang: | TUM01 UBW01 UBY01 UER01 Volltext |
Zusammenfassung: | This treatment of the basic theory of algebraic Riccati equations describes the classical as well as the more advanced algorithms for their solution in a manner that is accessible to both practitioners and scholars. It is the first book in which nonsymmetric algebraic Riccati equations are treated in a clear and systematic way. Some proofs of theoretical results have been simplified and a unified notation has been adopted. Readers will find a unified discussion of doubling algorithms, which are effective in solving algebraic Riccati equations as well as a detailed description of all classical and advanced algorithms for solving algebraic Riccati equations and their MATLAB codes. This will help the reader gain an understanding of the computational issues and provide ready-to-use implementation of the different solution techniques |
Beschreibung: | 1 Online-Ressource (xvi, 256 Seiten) |
ISBN: | 9781611972092 |
DOI: | 10.1137/1.9781611972092 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV040289737 | ||
003 | DE-604 | ||
005 | 20210626 | ||
007 | cr|uuu---uuuuu | ||
008 | 120703s2011 |||| o||u| ||||||eng d | ||
020 | |a 9781611972092 |9 978-1-61197-209-2 | ||
024 | 7 | |a 10.1137/1.9781611972092 |2 doi | |
024 | 7 | |a 10.1137/1.9781611972092 |2 doi | |
035 | |a (OCoLC)816193736 | ||
035 | |a (DE-599)BVBBV040289737 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-29 |a DE-91 |a DE-706 |a DE-83 |a DE-20 | ||
084 | |a MAT 150f |2 stub | ||
084 | |a MAT 659f |2 stub | ||
100 | 1 | |a Bini, Dario |d 1950- |0 (DE-588)11511484X |4 aut | |
245 | 1 | 0 | |a Numerical solution of algebraic Riccati equations |c Dario A. Bini, Bruno Iannazzo, Beatrice Meini |
264 | 1 | |a Philadelphia, Pa. |b Society for Industrial and Applied Mathematics (SIAM) |c 2011 | |
300 | |a 1 Online-Ressource (xvi, 256 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Fundamentals of algorithms |v 9 | |
520 | |a This treatment of the basic theory of algebraic Riccati equations describes the classical as well as the more advanced algorithms for their solution in a manner that is accessible to both practitioners and scholars. It is the first book in which nonsymmetric algebraic Riccati equations are treated in a clear and systematic way. Some proofs of theoretical results have been simplified and a unified notation has been adopted. Readers will find a unified discussion of doubling algorithms, which are effective in solving algebraic Riccati equations as well as a detailed description of all classical and advanced algorithms for solving algebraic Riccati equations and their MATLAB codes. This will help the reader gain an understanding of the computational issues and provide ready-to-use implementation of the different solution techniques | ||
650 | 4 | |a Riccati equation / Numerical solutions | |
650 | 4 | |a Differential algebra | |
650 | 0 | 7 | |a Riccati-Differentialgleichung |0 (DE-588)4230752-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Numerisches Verfahren |0 (DE-588)4128130-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Riccati-Differentialgleichung |0 (DE-588)4230752-1 |D s |
689 | 0 | 1 | |a Numerisches Verfahren |0 (DE-588)4128130-5 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Iannazzo, Bruno |0 (DE-588)1020426489 |4 aut | |
700 | 1 | |a Meini, Beatrice |d 1968- |0 (DE-588)1020426780 |4 aut | |
710 | 2 | |a Society for Industrial and Applied Mathematics |e Sonstige |4 oth | |
830 | 0 | |a Fundamentals of algorithms |v 9 |w (DE-604)BV046811132 |9 9 | |
856 | 4 | 0 | |u https://doi.org/10.1137/1.9781611972092 |x Verlag |3 Volltext |
912 | |a ZDB-72-SIA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-025144953 | ||
966 | e | |u https://doi.org/10.1137/1.9781611972092 |l TUM01 |p ZDB-72-SIA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1137/1.9781611972092 |l UBW01 |p ZDB-72-SIA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1137/1.9781611972092 |l UBY01 |p ZDB-72-SIA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1137/1.9781611972092 |l UER01 |p ZDB-72-SIA |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804149302794125312 |
---|---|
any_adam_object | |
author | Bini, Dario 1950- Iannazzo, Bruno Meini, Beatrice 1968- |
author_GND | (DE-588)11511484X (DE-588)1020426489 (DE-588)1020426780 |
author_facet | Bini, Dario 1950- Iannazzo, Bruno Meini, Beatrice 1968- |
author_role | aut aut aut |
author_sort | Bini, Dario 1950- |
author_variant | d b db b i bi b m bm |
building | Verbundindex |
bvnumber | BV040289737 |
classification_tum | MAT 150f MAT 659f |
collection | ZDB-72-SIA |
ctrlnum | (OCoLC)816193736 (DE-599)BVBBV040289737 |
discipline | Mathematik |
doi_str_mv | 10.1137/1.9781611972092 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03059nmm a2200529zcb4500</leader><controlfield tag="001">BV040289737</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20210626 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">120703s2011 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781611972092</subfield><subfield code="9">978-1-61197-209-2</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1137/1.9781611972092</subfield><subfield code="2">doi</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1137/1.9781611972092</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)816193736</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV040289737</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-29</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-20</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 150f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 659f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bini, Dario</subfield><subfield code="d">1950-</subfield><subfield code="0">(DE-588)11511484X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Numerical solution of algebraic Riccati equations</subfield><subfield code="c">Dario A. Bini, Bruno Iannazzo, Beatrice Meini</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Philadelphia, Pa.</subfield><subfield code="b">Society for Industrial and Applied Mathematics (SIAM)</subfield><subfield code="c">2011</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xvi, 256 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Fundamentals of algorithms</subfield><subfield code="v">9</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This treatment of the basic theory of algebraic Riccati equations describes the classical as well as the more advanced algorithms for their solution in a manner that is accessible to both practitioners and scholars. It is the first book in which nonsymmetric algebraic Riccati equations are treated in a clear and systematic way. Some proofs of theoretical results have been simplified and a unified notation has been adopted. Readers will find a unified discussion of doubling algorithms, which are effective in solving algebraic Riccati equations as well as a detailed description of all classical and advanced algorithms for solving algebraic Riccati equations and their MATLAB codes. This will help the reader gain an understanding of the computational issues and provide ready-to-use implementation of the different solution techniques</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Riccati equation / Numerical solutions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential algebra</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Riccati-Differentialgleichung</subfield><subfield code="0">(DE-588)4230752-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Numerisches Verfahren</subfield><subfield code="0">(DE-588)4128130-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Riccati-Differentialgleichung</subfield><subfield code="0">(DE-588)4230752-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Numerisches Verfahren</subfield><subfield code="0">(DE-588)4128130-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Iannazzo, Bruno</subfield><subfield code="0">(DE-588)1020426489</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Meini, Beatrice</subfield><subfield code="d">1968-</subfield><subfield code="0">(DE-588)1020426780</subfield><subfield code="4">aut</subfield></datafield><datafield tag="710" ind1="2" ind2=" "><subfield code="a">Society for Industrial and Applied Mathematics</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Fundamentals of algorithms</subfield><subfield code="v">9</subfield><subfield code="w">(DE-604)BV046811132</subfield><subfield code="9">9</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1137/1.9781611972092</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-72-SIA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-025144953</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1137/1.9781611972092</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-72-SIA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1137/1.9781611972092</subfield><subfield code="l">UBW01</subfield><subfield code="p">ZDB-72-SIA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1137/1.9781611972092</subfield><subfield code="l">UBY01</subfield><subfield code="p">ZDB-72-SIA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1137/1.9781611972092</subfield><subfield code="l">UER01</subfield><subfield code="p">ZDB-72-SIA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV040289737 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T00:20:53Z |
institution | BVB |
isbn | 9781611972092 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-025144953 |
oclc_num | 816193736 |
open_access_boolean | |
owner | DE-29 DE-91 DE-BY-TUM DE-706 DE-83 DE-20 |
owner_facet | DE-29 DE-91 DE-BY-TUM DE-706 DE-83 DE-20 |
physical | 1 Online-Ressource (xvi, 256 Seiten) |
psigel | ZDB-72-SIA |
publishDate | 2011 |
publishDateSearch | 2011 |
publishDateSort | 2011 |
publisher | Society for Industrial and Applied Mathematics (SIAM) |
record_format | marc |
series | Fundamentals of algorithms |
series2 | Fundamentals of algorithms |
spelling | Bini, Dario 1950- (DE-588)11511484X aut Numerical solution of algebraic Riccati equations Dario A. Bini, Bruno Iannazzo, Beatrice Meini Philadelphia, Pa. Society for Industrial and Applied Mathematics (SIAM) 2011 1 Online-Ressource (xvi, 256 Seiten) txt rdacontent c rdamedia cr rdacarrier Fundamentals of algorithms 9 This treatment of the basic theory of algebraic Riccati equations describes the classical as well as the more advanced algorithms for their solution in a manner that is accessible to both practitioners and scholars. It is the first book in which nonsymmetric algebraic Riccati equations are treated in a clear and systematic way. Some proofs of theoretical results have been simplified and a unified notation has been adopted. Readers will find a unified discussion of doubling algorithms, which are effective in solving algebraic Riccati equations as well as a detailed description of all classical and advanced algorithms for solving algebraic Riccati equations and their MATLAB codes. This will help the reader gain an understanding of the computational issues and provide ready-to-use implementation of the different solution techniques Riccati equation / Numerical solutions Differential algebra Riccati-Differentialgleichung (DE-588)4230752-1 gnd rswk-swf Numerisches Verfahren (DE-588)4128130-5 gnd rswk-swf Riccati-Differentialgleichung (DE-588)4230752-1 s Numerisches Verfahren (DE-588)4128130-5 s DE-604 Iannazzo, Bruno (DE-588)1020426489 aut Meini, Beatrice 1968- (DE-588)1020426780 aut Society for Industrial and Applied Mathematics Sonstige oth Fundamentals of algorithms 9 (DE-604)BV046811132 9 https://doi.org/10.1137/1.9781611972092 Verlag Volltext |
spellingShingle | Bini, Dario 1950- Iannazzo, Bruno Meini, Beatrice 1968- Numerical solution of algebraic Riccati equations Fundamentals of algorithms Riccati equation / Numerical solutions Differential algebra Riccati-Differentialgleichung (DE-588)4230752-1 gnd Numerisches Verfahren (DE-588)4128130-5 gnd |
subject_GND | (DE-588)4230752-1 (DE-588)4128130-5 |
title | Numerical solution of algebraic Riccati equations |
title_auth | Numerical solution of algebraic Riccati equations |
title_exact_search | Numerical solution of algebraic Riccati equations |
title_full | Numerical solution of algebraic Riccati equations Dario A. Bini, Bruno Iannazzo, Beatrice Meini |
title_fullStr | Numerical solution of algebraic Riccati equations Dario A. Bini, Bruno Iannazzo, Beatrice Meini |
title_full_unstemmed | Numerical solution of algebraic Riccati equations Dario A. Bini, Bruno Iannazzo, Beatrice Meini |
title_short | Numerical solution of algebraic Riccati equations |
title_sort | numerical solution of algebraic riccati equations |
topic | Riccati equation / Numerical solutions Differential algebra Riccati-Differentialgleichung (DE-588)4230752-1 gnd Numerisches Verfahren (DE-588)4128130-5 gnd |
topic_facet | Riccati equation / Numerical solutions Differential algebra Riccati-Differentialgleichung Numerisches Verfahren |
url | https://doi.org/10.1137/1.9781611972092 |
volume_link | (DE-604)BV046811132 |
work_keys_str_mv | AT binidario numericalsolutionofalgebraicriccatiequations AT iannazzobruno numericalsolutionofalgebraicriccatiequations AT meinibeatrice numericalsolutionofalgebraicriccatiequations AT societyforindustrialandappliedmathematics numericalsolutionofalgebraicriccatiequations |