The mathematics of diffusion:
Diffusion has been used extensively in many scientific disciplines to model a wide variety of phenomena. The Mathematics of Diffusion focuses on the qualitative properties of solutions to nonlinear elliptic and parabolic equations and systems in connection with domain geometry, various boundary cond...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Philadelphia, Pa.
Society for Industrial and Applied Mathematics (SIAM, 3600 Market Street, Floor 6, Philadelphia, PA 19104)
[2011]
|
Schriftenreihe: | CBMS-NSF regional conference series in applied mathematics
82 |
Schlagworte: | |
Online-Zugang: | TUM01 UBW01 UBY01 UER01 Volltext |
Zusammenfassung: | Diffusion has been used extensively in many scientific disciplines to model a wide variety of phenomena. The Mathematics of Diffusion focuses on the qualitative properties of solutions to nonlinear elliptic and parabolic equations and systems in connection with domain geometry, various boundary conditions, the mechanism of different diffusion rates, and the interaction between diffusion and spatial heterogeneity. The book systematically explores the interplay between different diffusion rates from the viewpoint of pattern formation, particularly Turing's diffusion-driven instability in both homogeneous and heterogeneous environments, and the roles of random diffusion, directed movements, and spatial heterogeneity in the classical Lotka-Volterra competition systems. Interspersed throughout the book are many simple, fundamental, and important open problems for readers to investigate |
Beschreibung: | 1 Online-Ressource (XII, 110 Seiten) |
ISBN: | 9781611971972 |
DOI: | 10.1137/1.9781611971972 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV040289676 | ||
003 | DE-604 | ||
005 | 20210531 | ||
007 | cr|uuu---uuuuu | ||
008 | 120703s2011 |||| o||u| ||||||eng d | ||
020 | |a 9781611971972 |9 978-1-61197-197-2 | ||
024 | 7 | |a 10.1137/1.9781611971972 |2 doi | |
035 | |a (OCoLC)861540431 | ||
035 | |a (DE-599)BVBBV040289676 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-29 |a DE-91 |a DE-706 |a DE-83 |a DE-20 | ||
082 | 0 | |a 515/.353 | |
100 | 1 | |a Ni, Wei-Ming |0 (DE-588)1022344838 |4 aut | |
245 | 1 | 0 | |a The mathematics of diffusion |c Wei-Ming Ni |
264 | 1 | |a Philadelphia, Pa. |b Society for Industrial and Applied Mathematics (SIAM, 3600 Market Street, Floor 6, Philadelphia, PA 19104) |c [2011] | |
300 | |a 1 Online-Ressource (XII, 110 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a CBMS-NSF regional conference series in applied mathematics |v 82 | |
520 | |a Diffusion has been used extensively in many scientific disciplines to model a wide variety of phenomena. The Mathematics of Diffusion focuses on the qualitative properties of solutions to nonlinear elliptic and parabolic equations and systems in connection with domain geometry, various boundary conditions, the mechanism of different diffusion rates, and the interaction between diffusion and spatial heterogeneity. The book systematically explores the interplay between different diffusion rates from the viewpoint of pattern formation, particularly Turing's diffusion-driven instability in both homogeneous and heterogeneous environments, and the roles of random diffusion, directed movements, and spatial heterogeneity in the classical Lotka-Volterra competition systems. Interspersed throughout the book are many simple, fundamental, and important open problems for readers to investigate | ||
650 | 4 | |a Heat equation | |
650 | 0 | 7 | |a Elliptische Differentialgleichung |0 (DE-588)4014485-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Parabolische Differentialgleichung |0 (DE-588)4173245-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Nichtlineare Diffusionsgleichung |0 (DE-588)4171749-1 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Nichtlineare Diffusionsgleichung |0 (DE-588)4171749-1 |D s |
689 | 0 | 1 | |a Elliptische Differentialgleichung |0 (DE-588)4014485-9 |D s |
689 | 0 | 2 | |a Parabolische Differentialgleichung |0 (DE-588)4173245-5 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
830 | 0 | |a CBMS-NSF regional conference series in applied mathematics |v 82 |w (DE-604)BV046682627 |9 82 | |
856 | 4 | 0 | |u https://doi.org/10.1137/1.9781611971972 |x Verlag |3 Volltext |
912 | |a ZDB-72-SIA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-025144892 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1137/1.9781611971972 |l TUM01 |p ZDB-72-SIA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1137/1.9781611971972 |l UBW01 |p ZDB-72-SIA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1137/1.9781611971972 |l UBY01 |p ZDB-72-SIA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1137/1.9781611971972 |l UER01 |p ZDB-72-SIA |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804149302701850624 |
---|---|
any_adam_object | |
author | Ni, Wei-Ming |
author_GND | (DE-588)1022344838 |
author_facet | Ni, Wei-Ming |
author_role | aut |
author_sort | Ni, Wei-Ming |
author_variant | w m n wmn |
building | Verbundindex |
bvnumber | BV040289676 |
collection | ZDB-72-SIA |
ctrlnum | (OCoLC)861540431 (DE-599)BVBBV040289676 |
dewey-full | 515/.353 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515/.353 |
dewey-search | 515/.353 |
dewey-sort | 3515 3353 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1137/1.9781611971972 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03114nmm a2200493zcb4500</leader><controlfield tag="001">BV040289676</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20210531 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">120703s2011 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781611971972</subfield><subfield code="9">978-1-61197-197-2</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1137/1.9781611971972</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)861540431</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV040289676</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-29</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-20</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515/.353</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ni, Wei-Ming</subfield><subfield code="0">(DE-588)1022344838</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The mathematics of diffusion</subfield><subfield code="c">Wei-Ming Ni</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Philadelphia, Pa.</subfield><subfield code="b">Society for Industrial and Applied Mathematics (SIAM, 3600 Market Street, Floor 6, Philadelphia, PA 19104)</subfield><subfield code="c">[2011]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XII, 110 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">CBMS-NSF regional conference series in applied mathematics</subfield><subfield code="v">82</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Diffusion has been used extensively in many scientific disciplines to model a wide variety of phenomena. The Mathematics of Diffusion focuses on the qualitative properties of solutions to nonlinear elliptic and parabolic equations and systems in connection with domain geometry, various boundary conditions, the mechanism of different diffusion rates, and the interaction between diffusion and spatial heterogeneity. The book systematically explores the interplay between different diffusion rates from the viewpoint of pattern formation, particularly Turing's diffusion-driven instability in both homogeneous and heterogeneous environments, and the roles of random diffusion, directed movements, and spatial heterogeneity in the classical Lotka-Volterra competition systems. Interspersed throughout the book are many simple, fundamental, and important open problems for readers to investigate</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Heat equation</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Elliptische Differentialgleichung</subfield><subfield code="0">(DE-588)4014485-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Parabolische Differentialgleichung</subfield><subfield code="0">(DE-588)4173245-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nichtlineare Diffusionsgleichung</subfield><subfield code="0">(DE-588)4171749-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Nichtlineare Diffusionsgleichung</subfield><subfield code="0">(DE-588)4171749-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Elliptische Differentialgleichung</subfield><subfield code="0">(DE-588)4014485-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Parabolische Differentialgleichung</subfield><subfield code="0">(DE-588)4173245-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">CBMS-NSF regional conference series in applied mathematics</subfield><subfield code="v">82</subfield><subfield code="w">(DE-604)BV046682627</subfield><subfield code="9">82</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1137/1.9781611971972</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-72-SIA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-025144892</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1137/1.9781611971972</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-72-SIA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1137/1.9781611971972</subfield><subfield code="l">UBW01</subfield><subfield code="p">ZDB-72-SIA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1137/1.9781611971972</subfield><subfield code="l">UBY01</subfield><subfield code="p">ZDB-72-SIA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1137/1.9781611971972</subfield><subfield code="l">UER01</subfield><subfield code="p">ZDB-72-SIA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV040289676 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T00:20:52Z |
institution | BVB |
isbn | 9781611971972 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-025144892 |
oclc_num | 861540431 |
open_access_boolean | |
owner | DE-29 DE-91 DE-BY-TUM DE-706 DE-83 DE-20 |
owner_facet | DE-29 DE-91 DE-BY-TUM DE-706 DE-83 DE-20 |
physical | 1 Online-Ressource (XII, 110 Seiten) |
psigel | ZDB-72-SIA |
publishDate | 2011 |
publishDateSearch | 2011 |
publishDateSort | 2011 |
publisher | Society for Industrial and Applied Mathematics (SIAM, 3600 Market Street, Floor 6, Philadelphia, PA 19104) |
record_format | marc |
series | CBMS-NSF regional conference series in applied mathematics |
series2 | CBMS-NSF regional conference series in applied mathematics |
spelling | Ni, Wei-Ming (DE-588)1022344838 aut The mathematics of diffusion Wei-Ming Ni Philadelphia, Pa. Society for Industrial and Applied Mathematics (SIAM, 3600 Market Street, Floor 6, Philadelphia, PA 19104) [2011] 1 Online-Ressource (XII, 110 Seiten) txt rdacontent c rdamedia cr rdacarrier CBMS-NSF regional conference series in applied mathematics 82 Diffusion has been used extensively in many scientific disciplines to model a wide variety of phenomena. The Mathematics of Diffusion focuses on the qualitative properties of solutions to nonlinear elliptic and parabolic equations and systems in connection with domain geometry, various boundary conditions, the mechanism of different diffusion rates, and the interaction between diffusion and spatial heterogeneity. The book systematically explores the interplay between different diffusion rates from the viewpoint of pattern formation, particularly Turing's diffusion-driven instability in both homogeneous and heterogeneous environments, and the roles of random diffusion, directed movements, and spatial heterogeneity in the classical Lotka-Volterra competition systems. Interspersed throughout the book are many simple, fundamental, and important open problems for readers to investigate Heat equation Elliptische Differentialgleichung (DE-588)4014485-9 gnd rswk-swf Parabolische Differentialgleichung (DE-588)4173245-5 gnd rswk-swf Nichtlineare Diffusionsgleichung (DE-588)4171749-1 gnd rswk-swf Nichtlineare Diffusionsgleichung (DE-588)4171749-1 s Elliptische Differentialgleichung (DE-588)4014485-9 s Parabolische Differentialgleichung (DE-588)4173245-5 s 1\p DE-604 CBMS-NSF regional conference series in applied mathematics 82 (DE-604)BV046682627 82 https://doi.org/10.1137/1.9781611971972 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Ni, Wei-Ming The mathematics of diffusion CBMS-NSF regional conference series in applied mathematics Heat equation Elliptische Differentialgleichung (DE-588)4014485-9 gnd Parabolische Differentialgleichung (DE-588)4173245-5 gnd Nichtlineare Diffusionsgleichung (DE-588)4171749-1 gnd |
subject_GND | (DE-588)4014485-9 (DE-588)4173245-5 (DE-588)4171749-1 |
title | The mathematics of diffusion |
title_auth | The mathematics of diffusion |
title_exact_search | The mathematics of diffusion |
title_full | The mathematics of diffusion Wei-Ming Ni |
title_fullStr | The mathematics of diffusion Wei-Ming Ni |
title_full_unstemmed | The mathematics of diffusion Wei-Ming Ni |
title_short | The mathematics of diffusion |
title_sort | the mathematics of diffusion |
topic | Heat equation Elliptische Differentialgleichung (DE-588)4014485-9 gnd Parabolische Differentialgleichung (DE-588)4173245-5 gnd Nichtlineare Diffusionsgleichung (DE-588)4171749-1 gnd |
topic_facet | Heat equation Elliptische Differentialgleichung Parabolische Differentialgleichung Nichtlineare Diffusionsgleichung |
url | https://doi.org/10.1137/1.9781611971972 |
volume_link | (DE-604)BV046682627 |
work_keys_str_mv | AT niweiming themathematicsofdiffusion |