Polynomial based iteration methods for symmetric linear systems:
This book provides a concise introduction to computational methods for solving large linear systems of equations. It is the only textbook that treats iteration methods for symmetric linear systems from a polynomial point of view. This particular feature enables readers to understand the convergence...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Philadelphia, Pa.
Society for Industrial and Applied Mathematics (SIAM, 3600 Market Street, Floor 6, Philadelphia, PA 19104)
2011
|
Schriftenreihe: | Classics in applied mathematics
68 |
Schlagworte: | |
Online-Zugang: | TUM01 UBW01 UBY01 UER01 Volltext |
Zusammenfassung: | This book provides a concise introduction to computational methods for solving large linear systems of equations. It is the only textbook that treats iteration methods for symmetric linear systems from a polynomial point of view. This particular feature enables readers to understand the convergence behavior and subtle differences of the various schemes, which are useful tools for the design of powerful preconditioners. Published nearly 15 years ago, Polynomial Based Iteration Methods for Symmetric Linear Systems continues to be useful to the mathematical, scientific, and engineering communities as a presentation of what appear to be the most efficient methods for symmetric linear systems of equations. To help potential users of numerical iteration algorithms design schemes for their particular needs, the author provides MATLAB code on a supplementary Web page to serve as a guideline. The code not only solves the linear system but also computes the underlying residual polynomials, illustrating the convergence behavior of the given linear system |
Beschreibung: | 1 Online-Ressource (283 Seiten) |
ISBN: | 9781611971927 |
DOI: | 10.1137/1.9781611971927 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV040289669 | ||
003 | DE-604 | ||
005 | 20240215 | ||
007 | cr|uuu---uuuuu | ||
008 | 120703s2011 |||| o||u| ||||||eng d | ||
020 | |a 9781611971927 |9 978-1-61197-192-7 | ||
024 | 7 | |a 10.1137/1.9781611971927 |2 doi | |
035 | |a (OCoLC)816193819 | ||
035 | |a (DE-599)BVBBV040289669 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-29 |a DE-91 |a DE-706 |a DE-83 |a DE-20 | ||
100 | 1 | |a Fischer, Bernd |d 1936-2020 |0 (DE-588)131935313 |4 aut | |
245 | 1 | 0 | |a Polynomial based iteration methods for symmetric linear systems |c Bernd Fischer |
264 | 1 | |a Philadelphia, Pa. |b Society for Industrial and Applied Mathematics (SIAM, 3600 Market Street, Floor 6, Philadelphia, PA 19104) |c 2011 | |
300 | |a 1 Online-Ressource (283 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Classics in applied mathematics |v 68 | |
520 | |a This book provides a concise introduction to computational methods for solving large linear systems of equations. It is the only textbook that treats iteration methods for symmetric linear systems from a polynomial point of view. This particular feature enables readers to understand the convergence behavior and subtle differences of the various schemes, which are useful tools for the design of powerful preconditioners. Published nearly 15 years ago, Polynomial Based Iteration Methods for Symmetric Linear Systems continues to be useful to the mathematical, scientific, and engineering communities as a presentation of what appear to be the most efficient methods for symmetric linear systems of equations. To help potential users of numerical iteration algorithms design schemes for their particular needs, the author provides MATLAB code on a supplementary Web page to serve as a guideline. The code not only solves the linear system but also computes the underlying residual polynomials, illustrating the convergence behavior of the given linear system | ||
650 | 4 | |a Iterative methods (Mathematics) | |
650 | 4 | |a Equations / Numerical solutions | |
650 | 4 | |a Polynomials | |
650 | 4 | |a Symmetric operators | |
650 | 0 | 7 | |a Orthogonale Polynome |0 (DE-588)4172863-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Lineares Gleichungssystem |0 (DE-588)4035826-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Schwach besetzte Matrix |0 (DE-588)4056053-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Iteration |0 (DE-588)4123457-1 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Lineares Gleichungssystem |0 (DE-588)4035826-4 |D s |
689 | 0 | 1 | |a Schwach besetzte Matrix |0 (DE-588)4056053-3 |D s |
689 | 0 | 2 | |a Iteration |0 (DE-588)4123457-1 |D s |
689 | 0 | 3 | |a Orthogonale Polynome |0 (DE-588)4172863-4 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
710 | 2 | |a Society for Industrial and Applied Mathematics |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-1-611971-91-0 |w (DE-604)BV039600879 |
830 | 0 | |a Classics in applied mathematics |v 68 |w (DE-604)BV040633091 |9 68 | |
856 | 4 | 0 | |u https://doi.org/10.1137/1.9781611971927 |x Verlag |3 Volltext |
912 | |a ZDB-72-SIA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-025144886 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1137/1.9781611971927 |l TUM01 |p ZDB-72-SIA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1137/1.9781611971927 |l UBW01 |p ZDB-72-SIA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1137/1.9781611971927 |l UBY01 |p ZDB-72-SIA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1137/1.9781611971927 |l UER01 |p ZDB-72-SIA |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804149302691364864 |
---|---|
any_adam_object | |
author | Fischer, Bernd 1936-2020 |
author_GND | (DE-588)131935313 |
author_facet | Fischer, Bernd 1936-2020 |
author_role | aut |
author_sort | Fischer, Bernd 1936-2020 |
author_variant | b f bf |
building | Verbundindex |
bvnumber | BV040289669 |
collection | ZDB-72-SIA |
ctrlnum | (OCoLC)816193819 (DE-599)BVBBV040289669 |
doi_str_mv | 10.1137/1.9781611971927 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03583nmm a2200565zcb4500</leader><controlfield tag="001">BV040289669</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20240215 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">120703s2011 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781611971927</subfield><subfield code="9">978-1-61197-192-7</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1137/1.9781611971927</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)816193819</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV040289669</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-29</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-20</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Fischer, Bernd</subfield><subfield code="d">1936-2020</subfield><subfield code="0">(DE-588)131935313</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Polynomial based iteration methods for symmetric linear systems</subfield><subfield code="c">Bernd Fischer</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Philadelphia, Pa.</subfield><subfield code="b">Society for Industrial and Applied Mathematics (SIAM, 3600 Market Street, Floor 6, Philadelphia, PA 19104)</subfield><subfield code="c">2011</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (283 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Classics in applied mathematics</subfield><subfield code="v">68</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book provides a concise introduction to computational methods for solving large linear systems of equations. It is the only textbook that treats iteration methods for symmetric linear systems from a polynomial point of view. This particular feature enables readers to understand the convergence behavior and subtle differences of the various schemes, which are useful tools for the design of powerful preconditioners. Published nearly 15 years ago, Polynomial Based Iteration Methods for Symmetric Linear Systems continues to be useful to the mathematical, scientific, and engineering communities as a presentation of what appear to be the most efficient methods for symmetric linear systems of equations. To help potential users of numerical iteration algorithms design schemes for their particular needs, the author provides MATLAB code on a supplementary Web page to serve as a guideline. The code not only solves the linear system but also computes the underlying residual polynomials, illustrating the convergence behavior of the given linear system</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Iterative methods (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Equations / Numerical solutions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Polynomials</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Symmetric operators</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Orthogonale Polynome</subfield><subfield code="0">(DE-588)4172863-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lineares Gleichungssystem</subfield><subfield code="0">(DE-588)4035826-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Schwach besetzte Matrix</subfield><subfield code="0">(DE-588)4056053-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Iteration</subfield><subfield code="0">(DE-588)4123457-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Lineares Gleichungssystem</subfield><subfield code="0">(DE-588)4035826-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Schwach besetzte Matrix</subfield><subfield code="0">(DE-588)4056053-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Iteration</subfield><subfield code="0">(DE-588)4123457-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Orthogonale Polynome</subfield><subfield code="0">(DE-588)4172863-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="710" ind1="2" ind2=" "><subfield code="a">Society for Industrial and Applied Mathematics</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-1-611971-91-0</subfield><subfield code="w">(DE-604)BV039600879</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Classics in applied mathematics</subfield><subfield code="v">68</subfield><subfield code="w">(DE-604)BV040633091</subfield><subfield code="9">68</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1137/1.9781611971927</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-72-SIA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-025144886</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1137/1.9781611971927</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-72-SIA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1137/1.9781611971927</subfield><subfield code="l">UBW01</subfield><subfield code="p">ZDB-72-SIA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1137/1.9781611971927</subfield><subfield code="l">UBY01</subfield><subfield code="p">ZDB-72-SIA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1137/1.9781611971927</subfield><subfield code="l">UER01</subfield><subfield code="p">ZDB-72-SIA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV040289669 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T00:20:52Z |
institution | BVB |
isbn | 9781611971927 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-025144886 |
oclc_num | 816193819 |
open_access_boolean | |
owner | DE-29 DE-91 DE-BY-TUM DE-706 DE-83 DE-20 |
owner_facet | DE-29 DE-91 DE-BY-TUM DE-706 DE-83 DE-20 |
physical | 1 Online-Ressource (283 Seiten) |
psigel | ZDB-72-SIA |
publishDate | 2011 |
publishDateSearch | 2011 |
publishDateSort | 2011 |
publisher | Society for Industrial and Applied Mathematics (SIAM, 3600 Market Street, Floor 6, Philadelphia, PA 19104) |
record_format | marc |
series | Classics in applied mathematics |
series2 | Classics in applied mathematics |
spelling | Fischer, Bernd 1936-2020 (DE-588)131935313 aut Polynomial based iteration methods for symmetric linear systems Bernd Fischer Philadelphia, Pa. Society for Industrial and Applied Mathematics (SIAM, 3600 Market Street, Floor 6, Philadelphia, PA 19104) 2011 1 Online-Ressource (283 Seiten) txt rdacontent c rdamedia cr rdacarrier Classics in applied mathematics 68 This book provides a concise introduction to computational methods for solving large linear systems of equations. It is the only textbook that treats iteration methods for symmetric linear systems from a polynomial point of view. This particular feature enables readers to understand the convergence behavior and subtle differences of the various schemes, which are useful tools for the design of powerful preconditioners. Published nearly 15 years ago, Polynomial Based Iteration Methods for Symmetric Linear Systems continues to be useful to the mathematical, scientific, and engineering communities as a presentation of what appear to be the most efficient methods for symmetric linear systems of equations. To help potential users of numerical iteration algorithms design schemes for their particular needs, the author provides MATLAB code on a supplementary Web page to serve as a guideline. The code not only solves the linear system but also computes the underlying residual polynomials, illustrating the convergence behavior of the given linear system Iterative methods (Mathematics) Equations / Numerical solutions Polynomials Symmetric operators Orthogonale Polynome (DE-588)4172863-4 gnd rswk-swf Lineares Gleichungssystem (DE-588)4035826-4 gnd rswk-swf Schwach besetzte Matrix (DE-588)4056053-3 gnd rswk-swf Iteration (DE-588)4123457-1 gnd rswk-swf Lineares Gleichungssystem (DE-588)4035826-4 s Schwach besetzte Matrix (DE-588)4056053-3 s Iteration (DE-588)4123457-1 s Orthogonale Polynome (DE-588)4172863-4 s 1\p DE-604 Society for Industrial and Applied Mathematics Sonstige oth Erscheint auch als Druck-Ausgabe 978-1-611971-91-0 (DE-604)BV039600879 Classics in applied mathematics 68 (DE-604)BV040633091 68 https://doi.org/10.1137/1.9781611971927 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Fischer, Bernd 1936-2020 Polynomial based iteration methods for symmetric linear systems Classics in applied mathematics Iterative methods (Mathematics) Equations / Numerical solutions Polynomials Symmetric operators Orthogonale Polynome (DE-588)4172863-4 gnd Lineares Gleichungssystem (DE-588)4035826-4 gnd Schwach besetzte Matrix (DE-588)4056053-3 gnd Iteration (DE-588)4123457-1 gnd |
subject_GND | (DE-588)4172863-4 (DE-588)4035826-4 (DE-588)4056053-3 (DE-588)4123457-1 |
title | Polynomial based iteration methods for symmetric linear systems |
title_auth | Polynomial based iteration methods for symmetric linear systems |
title_exact_search | Polynomial based iteration methods for symmetric linear systems |
title_full | Polynomial based iteration methods for symmetric linear systems Bernd Fischer |
title_fullStr | Polynomial based iteration methods for symmetric linear systems Bernd Fischer |
title_full_unstemmed | Polynomial based iteration methods for symmetric linear systems Bernd Fischer |
title_short | Polynomial based iteration methods for symmetric linear systems |
title_sort | polynomial based iteration methods for symmetric linear systems |
topic | Iterative methods (Mathematics) Equations / Numerical solutions Polynomials Symmetric operators Orthogonale Polynome (DE-588)4172863-4 gnd Lineares Gleichungssystem (DE-588)4035826-4 gnd Schwach besetzte Matrix (DE-588)4056053-3 gnd Iteration (DE-588)4123457-1 gnd |
topic_facet | Iterative methods (Mathematics) Equations / Numerical solutions Polynomials Symmetric operators Orthogonale Polynome Lineares Gleichungssystem Schwach besetzte Matrix Iteration |
url | https://doi.org/10.1137/1.9781611971927 |
volume_link | (DE-604)BV040633091 |
work_keys_str_mv | AT fischerbernd polynomialbasediterationmethodsforsymmetriclinearsystems AT societyforindustrialandappliedmathematics polynomialbasediterationmethodsforsymmetriclinearsystems |