Semismooth Newton methods for variational inequalities and constrained optimization problems in function spaces:
Semismooth Newton methods are a modern class of remarkably powerful and versatile algorithms for solving constrained optimization problems with partial differential equations (PDEs), variational inequalities, and related problems. This book provides a comprehensive presentation of these methods in f...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Philadelphia, Pa.
Society for Industrial and Applied Mathematics (SIAM, 3600 Market Street, Floor 6, Philadelphia, PA 19104)
2011
|
Schriftenreihe: | MOS-SIAM series on optimization
11 |
Schlagworte: | |
Online-Zugang: | TUM01 UBW01 UBY01 UER01 Volltext |
Zusammenfassung: | Semismooth Newton methods are a modern class of remarkably powerful and versatile algorithms for solving constrained optimization problems with partial differential equations (PDEs), variational inequalities, and related problems. This book provides a comprehensive presentation of these methods in function spaces, striking a balance between thoroughly developed theory and numerical applications. Although largely self-contained, the book also covers recent developments in the field, such as state-constrained problems, and offers new material on topics such as improved mesh independence results. The theory and methods are applied to a range of practically important problems, including: optimal control of nonlinear elliptic differential equations, obstacle problems, and flow control of instationary Navier-Stokes fluids. In addition, the author covers adjoint-based derivative computation and the efficient solution of Newton systems by multigrid and preconditioned iterative methods |
Beschreibung: | 1 Online-Ressource (xiv, 308 Seiten) |
ISBN: | 9781611970692 |
DOI: | 10.1137/1.9781611970692 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV040289643 | ||
003 | DE-604 | ||
005 | 20210607 | ||
007 | cr|uuu---uuuuu | ||
008 | 120703s2011 |||| o||u| ||||||eng d | ||
020 | |a 9781611970692 |9 978-1-61197-069-2 | ||
024 | 7 | |a 10.1137/1.9781611970692 |2 doi | |
035 | |a (OCoLC)816194027 | ||
035 | |a (DE-599)BVBBV040289643 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-29 |a DE-91 |a DE-706 |a DE-83 |a DE-20 | ||
100 | 1 | |a Ulbrich, Michael |d 1967- |0 (DE-588)132108941 |4 aut | |
245 | 1 | 0 | |a Semismooth Newton methods for variational inequalities and constrained optimization problems in function spaces |c Michael Ulbrich |
264 | 1 | |a Philadelphia, Pa. |b Society for Industrial and Applied Mathematics (SIAM, 3600 Market Street, Floor 6, Philadelphia, PA 19104) |c 2011 | |
300 | |a 1 Online-Ressource (xiv, 308 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a MOS-SIAM series on optimization |v [11] | |
520 | |a Semismooth Newton methods are a modern class of remarkably powerful and versatile algorithms for solving constrained optimization problems with partial differential equations (PDEs), variational inequalities, and related problems. This book provides a comprehensive presentation of these methods in function spaces, striking a balance between thoroughly developed theory and numerical applications. Although largely self-contained, the book also covers recent developments in the field, such as state-constrained problems, and offers new material on topics such as improved mesh independence results. The theory and methods are applied to a range of practically important problems, including: optimal control of nonlinear elliptic differential equations, obstacle problems, and flow control of instationary Navier-Stokes fluids. In addition, the author covers adjoint-based derivative computation and the efficient solution of Newton systems by multigrid and preconditioned iterative methods | ||
650 | 4 | |a Function spaces | |
650 | 4 | |a Constrained optimization | |
650 | 4 | |a Variational inequalities (Mathematics) | |
650 | 4 | |a Newton-Raphson method | |
650 | 0 | 7 | |a Funktionenraum |0 (DE-588)4134834-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Variationsungleichung |0 (DE-588)4187420-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Newton-Verfahren |0 (DE-588)4171693-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Constraint-Programmierung |0 (DE-588)4567206-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Nebenbedingung |0 (DE-588)4140066-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Optimierung |0 (DE-588)4043664-0 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Newton-Verfahren |0 (DE-588)4171693-0 |D s |
689 | 0 | 1 | |a Funktionenraum |0 (DE-588)4134834-5 |D s |
689 | 0 | 2 | |a Optimierung |0 (DE-588)4043664-0 |D s |
689 | 0 | 3 | |a Nebenbedingung |0 (DE-588)4140066-5 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Newton-Verfahren |0 (DE-588)4171693-0 |D s |
689 | 1 | 1 | |a Funktionenraum |0 (DE-588)4134834-5 |D s |
689 | 1 | 2 | |a Variationsungleichung |0 (DE-588)4187420-1 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Constraint-Programmierung |0 (DE-588)4567206-4 |D s |
689 | 2 | |8 3\p |5 DE-604 | |
710 | 2 | |a Society for Industrial and Applied Mathematics |e Sonstige |4 oth | |
830 | 0 | |a MOS-SIAM series on optimization |v 11 |w (DE-604)BV046333710 |9 11 | |
856 | 4 | 0 | |u https://doi.org/10.1137/1.9781611970692 |x Verlag |3 Volltext |
912 | |a ZDB-72-SIA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-025144859 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1137/1.9781611970692 |l TUM01 |p ZDB-72-SIA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1137/1.9781611970692 |l UBW01 |p ZDB-72-SIA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1137/1.9781611970692 |l UBY01 |p ZDB-72-SIA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1137/1.9781611970692 |l UER01 |p ZDB-72-SIA |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804149302665150464 |
---|---|
any_adam_object | |
author | Ulbrich, Michael 1967- |
author_GND | (DE-588)132108941 |
author_facet | Ulbrich, Michael 1967- |
author_role | aut |
author_sort | Ulbrich, Michael 1967- |
author_variant | m u mu |
building | Verbundindex |
bvnumber | BV040289643 |
collection | ZDB-72-SIA |
ctrlnum | (OCoLC)816194027 (DE-599)BVBBV040289643 |
doi_str_mv | 10.1137/1.9781611970692 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04050nmm a2200673zcb4500</leader><controlfield tag="001">BV040289643</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20210607 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">120703s2011 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781611970692</subfield><subfield code="9">978-1-61197-069-2</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1137/1.9781611970692</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)816194027</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV040289643</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-29</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-20</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ulbrich, Michael</subfield><subfield code="d">1967-</subfield><subfield code="0">(DE-588)132108941</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Semismooth Newton methods for variational inequalities and constrained optimization problems in function spaces</subfield><subfield code="c">Michael Ulbrich</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Philadelphia, Pa.</subfield><subfield code="b">Society for Industrial and Applied Mathematics (SIAM, 3600 Market Street, Floor 6, Philadelphia, PA 19104)</subfield><subfield code="c">2011</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xiv, 308 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">MOS-SIAM series on optimization</subfield><subfield code="v">[11]</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Semismooth Newton methods are a modern class of remarkably powerful and versatile algorithms for solving constrained optimization problems with partial differential equations (PDEs), variational inequalities, and related problems. This book provides a comprehensive presentation of these methods in function spaces, striking a balance between thoroughly developed theory and numerical applications. Although largely self-contained, the book also covers recent developments in the field, such as state-constrained problems, and offers new material on topics such as improved mesh independence results. The theory and methods are applied to a range of practically important problems, including: optimal control of nonlinear elliptic differential equations, obstacle problems, and flow control of instationary Navier-Stokes fluids. In addition, the author covers adjoint-based derivative computation and the efficient solution of Newton systems by multigrid and preconditioned iterative methods</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Function spaces</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Constrained optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Variational inequalities (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Newton-Raphson method</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Funktionenraum</subfield><subfield code="0">(DE-588)4134834-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Variationsungleichung</subfield><subfield code="0">(DE-588)4187420-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Newton-Verfahren</subfield><subfield code="0">(DE-588)4171693-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Constraint-Programmierung</subfield><subfield code="0">(DE-588)4567206-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nebenbedingung</subfield><subfield code="0">(DE-588)4140066-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Optimierung</subfield><subfield code="0">(DE-588)4043664-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Newton-Verfahren</subfield><subfield code="0">(DE-588)4171693-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Funktionenraum</subfield><subfield code="0">(DE-588)4134834-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Optimierung</subfield><subfield code="0">(DE-588)4043664-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Nebenbedingung</subfield><subfield code="0">(DE-588)4140066-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Newton-Verfahren</subfield><subfield code="0">(DE-588)4171693-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Funktionenraum</subfield><subfield code="0">(DE-588)4134834-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">Variationsungleichung</subfield><subfield code="0">(DE-588)4187420-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Constraint-Programmierung</subfield><subfield code="0">(DE-588)4567206-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="710" ind1="2" ind2=" "><subfield code="a">Society for Industrial and Applied Mathematics</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">MOS-SIAM series on optimization</subfield><subfield code="v">11</subfield><subfield code="w">(DE-604)BV046333710</subfield><subfield code="9">11</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1137/1.9781611970692</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-72-SIA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-025144859</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1137/1.9781611970692</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-72-SIA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1137/1.9781611970692</subfield><subfield code="l">UBW01</subfield><subfield code="p">ZDB-72-SIA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1137/1.9781611970692</subfield><subfield code="l">UBY01</subfield><subfield code="p">ZDB-72-SIA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1137/1.9781611970692</subfield><subfield code="l">UER01</subfield><subfield code="p">ZDB-72-SIA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV040289643 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T00:20:52Z |
institution | BVB |
isbn | 9781611970692 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-025144859 |
oclc_num | 816194027 |
open_access_boolean | |
owner | DE-29 DE-91 DE-BY-TUM DE-706 DE-83 DE-20 |
owner_facet | DE-29 DE-91 DE-BY-TUM DE-706 DE-83 DE-20 |
physical | 1 Online-Ressource (xiv, 308 Seiten) |
psigel | ZDB-72-SIA |
publishDate | 2011 |
publishDateSearch | 2011 |
publishDateSort | 2011 |
publisher | Society for Industrial and Applied Mathematics (SIAM, 3600 Market Street, Floor 6, Philadelphia, PA 19104) |
record_format | marc |
series | MOS-SIAM series on optimization |
series2 | MOS-SIAM series on optimization |
spelling | Ulbrich, Michael 1967- (DE-588)132108941 aut Semismooth Newton methods for variational inequalities and constrained optimization problems in function spaces Michael Ulbrich Philadelphia, Pa. Society for Industrial and Applied Mathematics (SIAM, 3600 Market Street, Floor 6, Philadelphia, PA 19104) 2011 1 Online-Ressource (xiv, 308 Seiten) txt rdacontent c rdamedia cr rdacarrier MOS-SIAM series on optimization [11] Semismooth Newton methods are a modern class of remarkably powerful and versatile algorithms for solving constrained optimization problems with partial differential equations (PDEs), variational inequalities, and related problems. This book provides a comprehensive presentation of these methods in function spaces, striking a balance between thoroughly developed theory and numerical applications. Although largely self-contained, the book also covers recent developments in the field, such as state-constrained problems, and offers new material on topics such as improved mesh independence results. The theory and methods are applied to a range of practically important problems, including: optimal control of nonlinear elliptic differential equations, obstacle problems, and flow control of instationary Navier-Stokes fluids. In addition, the author covers adjoint-based derivative computation and the efficient solution of Newton systems by multigrid and preconditioned iterative methods Function spaces Constrained optimization Variational inequalities (Mathematics) Newton-Raphson method Funktionenraum (DE-588)4134834-5 gnd rswk-swf Variationsungleichung (DE-588)4187420-1 gnd rswk-swf Newton-Verfahren (DE-588)4171693-0 gnd rswk-swf Constraint-Programmierung (DE-588)4567206-4 gnd rswk-swf Nebenbedingung (DE-588)4140066-5 gnd rswk-swf Optimierung (DE-588)4043664-0 gnd rswk-swf Newton-Verfahren (DE-588)4171693-0 s Funktionenraum (DE-588)4134834-5 s Optimierung (DE-588)4043664-0 s Nebenbedingung (DE-588)4140066-5 s 1\p DE-604 Variationsungleichung (DE-588)4187420-1 s 2\p DE-604 Constraint-Programmierung (DE-588)4567206-4 s 3\p DE-604 Society for Industrial and Applied Mathematics Sonstige oth MOS-SIAM series on optimization 11 (DE-604)BV046333710 11 https://doi.org/10.1137/1.9781611970692 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Ulbrich, Michael 1967- Semismooth Newton methods for variational inequalities and constrained optimization problems in function spaces MOS-SIAM series on optimization Function spaces Constrained optimization Variational inequalities (Mathematics) Newton-Raphson method Funktionenraum (DE-588)4134834-5 gnd Variationsungleichung (DE-588)4187420-1 gnd Newton-Verfahren (DE-588)4171693-0 gnd Constraint-Programmierung (DE-588)4567206-4 gnd Nebenbedingung (DE-588)4140066-5 gnd Optimierung (DE-588)4043664-0 gnd |
subject_GND | (DE-588)4134834-5 (DE-588)4187420-1 (DE-588)4171693-0 (DE-588)4567206-4 (DE-588)4140066-5 (DE-588)4043664-0 |
title | Semismooth Newton methods for variational inequalities and constrained optimization problems in function spaces |
title_auth | Semismooth Newton methods for variational inequalities and constrained optimization problems in function spaces |
title_exact_search | Semismooth Newton methods for variational inequalities and constrained optimization problems in function spaces |
title_full | Semismooth Newton methods for variational inequalities and constrained optimization problems in function spaces Michael Ulbrich |
title_fullStr | Semismooth Newton methods for variational inequalities and constrained optimization problems in function spaces Michael Ulbrich |
title_full_unstemmed | Semismooth Newton methods for variational inequalities and constrained optimization problems in function spaces Michael Ulbrich |
title_short | Semismooth Newton methods for variational inequalities and constrained optimization problems in function spaces |
title_sort | semismooth newton methods for variational inequalities and constrained optimization problems in function spaces |
topic | Function spaces Constrained optimization Variational inequalities (Mathematics) Newton-Raphson method Funktionenraum (DE-588)4134834-5 gnd Variationsungleichung (DE-588)4187420-1 gnd Newton-Verfahren (DE-588)4171693-0 gnd Constraint-Programmierung (DE-588)4567206-4 gnd Nebenbedingung (DE-588)4140066-5 gnd Optimierung (DE-588)4043664-0 gnd |
topic_facet | Function spaces Constrained optimization Variational inequalities (Mathematics) Newton-Raphson method Funktionenraum Variationsungleichung Newton-Verfahren Constraint-Programmierung Nebenbedingung Optimierung |
url | https://doi.org/10.1137/1.9781611970692 |
volume_link | (DE-604)BV046333710 |
work_keys_str_mv | AT ulbrichmichael semismoothnewtonmethodsforvariationalinequalitiesandconstrainedoptimizationproblemsinfunctionspaces AT societyforindustrialandappliedmathematics semismoothnewtonmethodsforvariationalinequalitiesandconstrainedoptimizationproblemsinfunctionspaces |