Complex Hamiltonian dynamics:
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Berlin [u.a.]
Springer
2012
|
Schriftenreihe: | Springer series in synergetics
Springer complexity |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | Literaturangaben |
Beschreibung: | XXIII, 255 S. graph. Darst. 24 cm |
ISBN: | 9783642273049 9783642273056 3642273041 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV040263745 | ||
003 | DE-604 | ||
005 | 20121120 | ||
007 | t | ||
008 | 120620s2012 gw d||| |||| 00||| eng d | ||
015 | |a 11,N48 |2 dnb | ||
015 | |a 12,A23 |2 dnb | ||
016 | 7 | |a 1017314721 |2 DE-101 | |
020 | |a 9783642273049 |c Pp. : EUR 90.90 (DE, freier Pr.) |9 978-3-642-27304-9 | ||
020 | |a 9783642273056 |c Online |9 978-3-642-27305-6 | ||
020 | |a 3642273041 |9 3-642-27304-1 | ||
035 | |a (OCoLC)794945107 | ||
035 | |a (DE-599)DNB1017314721 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE-BE | ||
049 | |a DE-11 |a DE-19 |a DE-703 | ||
082 | 0 | |a 530.15539 |2 22/ger | |
084 | |a UG 3900 |0 (DE-625)145629: |2 rvk | ||
084 | |a 530 |2 sdnb | ||
084 | |a 510 |2 sdnb | ||
100 | 1 | |a Mpuntēs, Tasos |e Verfasser |4 aut | |
245 | 1 | 0 | |a Complex Hamiltonian dynamics |c Tassos Bountis ; Haris Skokos |
264 | 1 | |a Berlin [u.a.] |b Springer |c 2012 | |
300 | |a XXIII, 255 S. |b graph. Darst. |c 24 cm | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Springer series in synergetics | |
490 | 0 | |a Springer complexity | |
500 | |a Literaturangaben | ||
650 | 0 | 7 | |a Nichtlineare Dynamik |0 (DE-588)4126141-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Hamiltonsches System |0 (DE-588)4139943-2 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Hamiltonsches System |0 (DE-588)4139943-2 |D s |
689 | 0 | 1 | |a Nichtlineare Dynamik |0 (DE-588)4126141-0 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Skokos, Haris |e Verfasser |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |t Complex Hamiltonian Dynamics |
856 | 4 | 2 | |m DNB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=025119462&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-025119462 |
Datensatz im Suchindex
_version_ | 1804149266057265152 |
---|---|
adam_text | IMAGE 1
CONTENTS
1 INTRODUCTION 1
1.1 PREAMBLE 1
1.2 LYAPUNOV STABILITY O F DYNAMICAL SYSTEMS 3
1.3 HAMILTONIAN DYNAMICAL SYSTEMS 7
1.4 COMPLEX HAMILTONIAN DYNAMICS 10
2 HAMILTONIAN SYSTEMS O F FEW DEGREES O F FREEDOM 13
2.1 T H E CASE O F /V = 1 DEGREE O F FREEDOM 13
2.2 T H E CASE O F /V = 2 DEGREES O F FREEDOM 19
2.2.1 COORDINATE TRANSFORMATIONS AND SOLUTION BY QUADRATURES . . . 2 0
2.2.2 INTEGRABILITY AND SOLVABILITY O F THE EQUATIONS O F MOTION 2 4
2.3 NON-AUTONOMOUS O N E DEGREE O F FREEDOM HAMILTONIAN SYSTEMS . . . .
3 0 2.3.1 T H E DUFFING OSCILLATOR WITH QUADRATIC NONLINEARITY 31
2.3.2 T H E DUFFING OSCILLATOR WITH CUBIC NONLINEARITY 3 4
EXERCISES 3 7
PROBLEMS 39
3 LOCAL AND GLOBAL STABILITY O F MOTION 41
3.1 EQUILIBRIUM POINTS, PERIODIC ORBITS AND LOCAL STABILITY 41
3.1.1 EQUILIBRIUM POINTS 41
3.1.2 PERIODIC ORBITS 4 4
3.2 LINEAR STABILITY ANALYSIS 4 6
3.2.1 AN ANALYTICAL CRITERION FOR WEAK CHAOS 51
3.3 LYAPUNOV CHARACTERISTIC EXPONENTS AND STRONG CHAOS 5 3
3.3.1 LYAPUNOV SPECTRA AND THEIR CONVERGENCE 5 3
3.3.1.1 LYAPUNOV SPECTRA AND THE THERMODYNAMIC LIMIT 5 5
3.4 DISTINGUISHING O R D E R FROM CHAOS 5 6
3.4.1 T H E SAL1 METHOD 5 8
3.4.2 T H E G A L I METHOD 5 9
EXERCISES 6 0
PROBLEMS 61
X V I I
HTTP://D-NB.INFO/1017314721
IMAGE 2
X V I I I
C O N T E N T S
4 NORMAL MODES, SYMMETRIES AND STABILITY 6 3
4.1 NORMAL MODES O F LINEAR ONE-DIMENSIONAL HAMILTONIAN LATTICES . . . 6
3 4.2 NONLINEAR NORMAL MODES (NNMS) AND THE PROBLEM O F CONTINUATION 6 5
4.3 PERIODIC BOUNDARY CONDITIONS AND DISCRETE SYMMETRIES 6 7
4.3.1 N N M S AS ONE-DIMENSIONAL BUSHES 6 7
4.3.2 HIGHER-DIMENSIONAL BUSHES AND QUASIPERIODIC ORBITS 7 0
4.4 A GROUP THEORETICAL STUDY O F BUSHES 7 0
4.4.1 SUBGROUPS O F THE PARENT G R O U P AND BUSHES O F N N M S 7 2
4.4.2 BUSHES IN MODAL SPACE AND STABILITY ANALYSIS 7 4
4.5 APPLICATIONS TO SOLID STATE PHYSICS 8 0
4.5.1 BUSHES O F N N M S FOR A SQUARE MOLECULE 8 0
4.5.2 BUSHES O F N N M S FOR A SIMPLE OCTAHEDRAL MOLECULE 8 4
EXERCISES 87
PROBLEMS 8 8
5 EFFICIENT INDICATORS O F ORDERED AND CHAOTIC MOTION 91
5.1 VARIATIONAL EQUATIONS AND TANGENT M A P 91
5.2 T H E SALI METHOD 9 4
5.3 THE G A L I METHOD 102
5.3.1 THEORETICAL RESULTS FOR THE T I M E EVOLUTION O F G A L I 104
5.3.1.1 EXPONENTIAL DECAY O F G A L I FOR CHAOTIC ORBITS - 104 5.3.1.2 T
H E EVALUATION O F G A L I FOR ORDERED ORBITS 107
5.3.2 NUMERICAL VERIFICATION AND APPLICATIONS 111
5.3.2.1 LOW-DIMENSIONAL HAMILTONIAN SYSTEMS I L L
5.3.2.2 HIGH-DIMENSIONAL HAMILTONIAN SYSTEMS 117
5.3.2.3 SYMPLECTIC MAPS 120
5.3.2.4 MOTION ON LOW-DIMENSIONAL TORI 122
APPENDIX A: WEDGE PRODUCT 124
APPENDIX B: EXAMPLE ALGORITHMS FOR THE COMPUTATION O F THE SALI AND G A
L I CHAOS INDICATORS 126
EXERCISES 130
PROBLEMS 131
6 F P U RECURRENCES AND THE TRANSITION F R O M W E A K TO STRONG CHAOS .
. . . 133 6.1 T H E FERMI PASTA ULAM PROBLEM 133
6.1.1 HISTORICAL REMARKS 133
6.1.2 T H E CONCEPT O F Q-BREATHERS 136
6.1.3 T H E CONCEPT O F Q-TORI 138
6.2 EXISTENCE AND STABILITY O F Q-TORI 139
6.2.1 CONSTRUCTION O F (/-TORI BY POINCARE-LINSTEDT SERIES 140
6.2.2 PROFILE O F THE ENERGY LOCALIZATION 147
6.3 A NUMERICAL STUDY O F FPU TRAJECTORIES 152
6.3.1 LONG TIME STABILITY NEAR Q- TORI 155
IMAGE 3
CONTENTS XIX
6.4 DIFFUSION AND THE BREAKDOWN O F F P U RECURRENCES 157
6.4.1 TWO STAGES O F THE DIFFUSION PROCESS 158
6.4.2 RATE O F DIFFUSION O F ENERGY TO THE TAIL M O D E S 160
6.4.3 TIME INTERVAL FOR ENERGY EQUIPARTITION 162
EXERCISES 163
PROBLEMS 164
7 LOCALIZATION AND DIFFUSION IN NONLINEAR ONE-DIMENSIONAL LATTICES . . .
1 65 7.1 INTRODUCTION AND HISTORICAL REMARKS 165
7.1.1 LOCALIZATION IN CONFIGURATION SPACE 166
7.2 DISCRETE BREATHERS AND HOMOCLINIC DYNAMICS 168
7.2.1 HOW TO CONSTRUCT HOMOCLINIC ORBITS 171
7.3 A METHOD FOR CONSTRUCTING DISCRETE BREATHERS 174
7.3.1 STABILIZING DISCRETE BREATHERS BY A CONTROL METHOD 175
7.4 DISORDERED LATTICES 180
7.4.1 ANDERSON LOCALIZATION IN DISORDERED LINEAR M E D I A 180
7.4.2 DIFFUSION IN DISORDERED NONLINEAR CHAINS 183
7.4.2.1 TWO BASIC MODELS 183
7.4.2.2 REGIMES O F WAVE PACKET SPREADING 185
7.4.2.3 NUMERICAL RESULTS 186
EXERCISES 188
PROBLEMS 189
8 THE STATISTICAL MECHANICS O F QUASI-STATIONARY STATES 191
8.1 FROM DETERMINISTIC DYNAMICS TO STATISTICAL MECHANICS 191
8.1.1 NONEXTENSIVE STATISTICAL MECHANICS AND Y-GAUSSIAN PDFS 193
8.2 STATISTICAL DISTRIBUTIONS O F CHAOTIC Q S S AND THEIR COMPUTATION
195 8.3 FPU JR-MODE U N D E R PERIODIC BOUNDARY CONDITIONS 197
8.3.1 CHAOTIC BREATHERS AND THE F P U 7T-MODE 2 0 0
8.4 F P U S P O L AND S P 0 2 M O D E S U N D E R FIXED BOUNDARY
CONDITIONS 2 0 3
8.5 ^-GAUSSIAN DISTRIBUTIONS FOR A SMALL MICROPLASMA SYSTEM 2 0 8
8.6 CHAOTIC QUASI-STATIONARY STATES IN AREA-PRESERVING M A P S 2 1 2
8.6.1 TIME-EVOLVING STATISTICS O F PDFS IN AREA- PRESERVING MAPS 2 1 3
8.6.2 T H E PERTURBED MACMILLAN M A P 2 1 4
8.6.2.1 T H E S = 0.9, N = 1.6 CLASS O F EXAMPLES 2 1 5
8.6.2.2 T H E E - 1.2, /X = 1.6 CLASS O F EXAMPLES 2 1 7
EXERCISES 2 1 8
PROBLEMS 2 1 9
9 CONCLUSIONS, O P E N PROBLEMS A N D FUTURE OUTLOOK 22 1
9.1 CONCLUSIONS 221
9.2 OPEN PROBLEMS 2 2 4
9.2.1 SINGULARITY ANALYSIS: W H E R E MATHEMATICS MEETS PHYSICS 2 2 4
IMAGE 4
XX CONTENTS
9.2.2 NONLINEAR NORMAL MODES, QUASIPERIODICITY
AND LOCALIZATION 2 2 6
9.2.3 DIFFUSION, QUASI-STATIONARY STATES AND COMPLEX STATISTICS . . . 2
2 9 9.3 FUTURE OUTLOOK 231
9.3.1 ANOMALOUS HEAT CONDUCTION AND CONTROL O F H E A T FLOW 231
9.3.2 COMPLEX SOLITON DYNAMICS IN NONLINEAR PHOTONIC STRUCTURES 2 3 2
9.3.3 KINETIC THEORY O F HAMILTONIAN SYSTEMS AND APPLICATIONS TO PLASMA
PHYSICS 2 3 5
REFERENCES 2 3 9
INDEX 2 5 3
|
any_adam_object | 1 |
author | Mpuntēs, Tasos Skokos, Haris |
author_facet | Mpuntēs, Tasos Skokos, Haris |
author_role | aut aut |
author_sort | Mpuntēs, Tasos |
author_variant | t m tm h s hs |
building | Verbundindex |
bvnumber | BV040263745 |
classification_rvk | UG 3900 |
ctrlnum | (OCoLC)794945107 (DE-599)DNB1017314721 |
dewey-full | 530.15539 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530.15539 |
dewey-search | 530.15539 |
dewey-sort | 3530.15539 |
dewey-tens | 530 - Physics |
discipline | Physik Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01900nam a2200505 c 4500</leader><controlfield tag="001">BV040263745</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20121120 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">120620s2012 gw d||| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">11,N48</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">12,A23</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">1017314721</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642273049</subfield><subfield code="c">Pp. : EUR 90.90 (DE, freier Pr.)</subfield><subfield code="9">978-3-642-27304-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642273056</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-642-27305-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3642273041</subfield><subfield code="9">3-642-27304-1</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)794945107</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB1017314721</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-11</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-703</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530.15539</subfield><subfield code="2">22/ger</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UG 3900</subfield><subfield code="0">(DE-625)145629:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">530</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">510</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Mpuntēs, Tasos</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Complex Hamiltonian dynamics</subfield><subfield code="c">Tassos Bountis ; Haris Skokos</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">2012</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXIII, 255 S.</subfield><subfield code="b">graph. Darst.</subfield><subfield code="c">24 cm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Springer series in synergetics</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Springer complexity</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Literaturangaben</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nichtlineare Dynamik</subfield><subfield code="0">(DE-588)4126141-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hamiltonsches System</subfield><subfield code="0">(DE-588)4139943-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Hamiltonsches System</subfield><subfield code="0">(DE-588)4139943-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Nichtlineare Dynamik</subfield><subfield code="0">(DE-588)4126141-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Skokos, Haris</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="t">Complex Hamiltonian Dynamics</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=025119462&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-025119462</subfield></datafield></record></collection> |
id | DE-604.BV040263745 |
illustrated | Illustrated |
indexdate | 2024-07-10T00:20:17Z |
institution | BVB |
isbn | 9783642273049 9783642273056 3642273041 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-025119462 |
oclc_num | 794945107 |
open_access_boolean | |
owner | DE-11 DE-19 DE-BY-UBM DE-703 |
owner_facet | DE-11 DE-19 DE-BY-UBM DE-703 |
physical | XXIII, 255 S. graph. Darst. 24 cm |
publishDate | 2012 |
publishDateSearch | 2012 |
publishDateSort | 2012 |
publisher | Springer |
record_format | marc |
series2 | Springer series in synergetics Springer complexity |
spelling | Mpuntēs, Tasos Verfasser aut Complex Hamiltonian dynamics Tassos Bountis ; Haris Skokos Berlin [u.a.] Springer 2012 XXIII, 255 S. graph. Darst. 24 cm txt rdacontent n rdamedia nc rdacarrier Springer series in synergetics Springer complexity Literaturangaben Nichtlineare Dynamik (DE-588)4126141-0 gnd rswk-swf Hamiltonsches System (DE-588)4139943-2 gnd rswk-swf Hamiltonsches System (DE-588)4139943-2 s Nichtlineare Dynamik (DE-588)4126141-0 s DE-604 Skokos, Haris Verfasser aut Erscheint auch als Online-Ausgabe Complex Hamiltonian Dynamics DNB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=025119462&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Mpuntēs, Tasos Skokos, Haris Complex Hamiltonian dynamics Nichtlineare Dynamik (DE-588)4126141-0 gnd Hamiltonsches System (DE-588)4139943-2 gnd |
subject_GND | (DE-588)4126141-0 (DE-588)4139943-2 |
title | Complex Hamiltonian dynamics |
title_auth | Complex Hamiltonian dynamics |
title_exact_search | Complex Hamiltonian dynamics |
title_full | Complex Hamiltonian dynamics Tassos Bountis ; Haris Skokos |
title_fullStr | Complex Hamiltonian dynamics Tassos Bountis ; Haris Skokos |
title_full_unstemmed | Complex Hamiltonian dynamics Tassos Bountis ; Haris Skokos |
title_short | Complex Hamiltonian dynamics |
title_sort | complex hamiltonian dynamics |
topic | Nichtlineare Dynamik (DE-588)4126141-0 gnd Hamiltonsches System (DE-588)4139943-2 gnd |
topic_facet | Nichtlineare Dynamik Hamiltonsches System |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=025119462&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT mpuntestasos complexhamiltoniandynamics AT skokosharis complexhamiltoniandynamics |