Nonlinear Perron-Frobenius theory:
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Cambridge [u.a.]
Cambridge University Press
2012
|
Ausgabe: | 1. publ. |
Schriftenreihe: | Cambridge tracts in mathematics
189 |
Schlagworte: | |
Online-Zugang: | Cover image Inhaltsverzeichnis |
Beschreibung: | "Sometimes in mathematics an innocent-looking observation opens up a new road to a fertile field. A nice example of such an observation is due to Garrett Birkhoff [23] and Hans Samelson [187], who remarked that one can use Hilbert's (projective) metric and the contraction mapping principle to prove some of the theorems of Perron and Frobenius concerning eigenvectors and eigenvalues of nonnegative matrices. This idea has been pivotal for the development of nonlinear Perron-Frobenius theory"-- Provided by publisher. Includes bibliographical references and index |
Beschreibung: | XII, 323 S. |
ISBN: | 9780521898812 |
Internformat
MARC
LEADER | 00000nam a2200000zcb4500 | ||
---|---|---|---|
001 | BV040249660 | ||
003 | DE-604 | ||
005 | 20190306 | ||
007 | t | ||
008 | 120613s2012 xxk |||| 00||| eng d | ||
010 | |a 2011053268 | ||
020 | |a 9780521898812 |c hardback |9 978-0-521-89881-2 | ||
035 | |a (OCoLC)795907092 | ||
035 | |a (DE-599)BVBBV040249660 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
044 | |a xxk |c GB | ||
049 | |a DE-384 |a DE-188 |a DE-29T |a DE-19 |a DE-91 | ||
050 | 0 | |a QA188 | |
082 | 0 | |a 512/.5 | |
084 | |a SK 220 |0 (DE-625)143224: |2 rvk | ||
084 | |a SK 620 |0 (DE-625)143249: |2 rvk | ||
084 | |a MAT 154f |2 stub | ||
100 | 1 | |a Lemmens, Bas |e Verfasser |0 (DE-588)1022751735 |4 aut | |
245 | 1 | 0 | |a Nonlinear Perron-Frobenius theory |c Bas Lemmens ; Roger Nussbaum |
250 | |a 1. publ. | ||
264 | 1 | |a Cambridge [u.a.] |b Cambridge University Press |c 2012 | |
300 | |a XII, 323 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Cambridge tracts in mathematics |v 189 | |
500 | |a "Sometimes in mathematics an innocent-looking observation opens up a new road to a fertile field. A nice example of such an observation is due to Garrett Birkhoff [23] and Hans Samelson [187], who remarked that one can use Hilbert's (projective) metric and the contraction mapping principle to prove some of the theorems of Perron and Frobenius concerning eigenvectors and eigenvalues of nonnegative matrices. This idea has been pivotal for the development of nonlinear Perron-Frobenius theory"-- Provided by publisher. | ||
500 | |a Includes bibliographical references and index | ||
650 | 4 | |a Non-negative matrices | |
650 | 4 | |a Eigenvalues | |
650 | 4 | |a Eigenvectors | |
650 | 4 | |a Algebras, Linear | |
650 | 7 | |a MATHEMATICS / Differential Equations |2 bisacsh | |
650 | 0 | 7 | |a Nichtnegative Matrix |0 (DE-588)4310434-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Matrizentheorie |0 (DE-588)4128970-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Eigenwert |0 (DE-588)4151200-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Eigenvektor |0 (DE-588)4151198-0 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Matrizentheorie |0 (DE-588)4128970-5 |D s |
689 | 0 | 1 | |a Nichtnegative Matrix |0 (DE-588)4310434-4 |D s |
689 | 0 | 2 | |a Eigenwert |0 (DE-588)4151200-5 |D s |
689 | 0 | 3 | |a Eigenvektor |0 (DE-588)4151198-0 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Nussbaum, Roger D. |d 1944- |e Verfasser |0 (DE-588)172288282 |4 aut | |
830 | 0 | |a Cambridge tracts in mathematics |v 189 |w (DE-604)BV000000001 |9 189 | |
856 | 4 | |u http://assets.cambridge.org/97805218/98812/cover/9780521898812.jpg |3 Cover image | |
856 | 4 | 2 | |m LoC Fremddatenuebernahme |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=025105657&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-025105657 |
Datensatz im Suchindex
_version_ | 1804149245477912576 |
---|---|
adam_text | NONLINEAR PERRON-FROBENIUS THEORY
/ LEMMENS, BAS
: 2012
TABLE OF CONTENTS / INHALTSVERZEICHNIS
PREFACE; 1. WHAT IS NONLINEAR PERRON-FROBENIUS THEORY?; 2.
NON-EXPANSIVENESS AND NONLINEAR PERRON-FROBENIUS THEORY; 3. DYNAMICS OF
NON-EXPANSIVE MAPS; 4. SUP-NORM NON-EXPANSIVE MAPS; 5. EIGENVECTORS AND
EIGENVALUES OF NONLINEAR CONE MAPS; 6. EIGENVECTORS IN THE INTERIOR OF
THE CONE; 7. APPLICATIONS TO MATRIX SCALING PROBLEMS; 8. DYNAMICS OF
SUBHOMOGENEOUS MAPS; 9. DYNAMICS OF INTEGRAL-PRESERVING MAPS; APPENDIX
A. THE BIRKHOFF-HOPF THEOREM; APPENDIX B. CLASSICAL PERRON-FROBENIUS
THEORY; REFERENCES; INDEX.
DIESES SCHRIFTSTUECK WURDE MASCHINELL ERZEUGT.
|
any_adam_object | 1 |
author | Lemmens, Bas Nussbaum, Roger D. 1944- |
author_GND | (DE-588)1022751735 (DE-588)172288282 |
author_facet | Lemmens, Bas Nussbaum, Roger D. 1944- |
author_role | aut aut |
author_sort | Lemmens, Bas |
author_variant | b l bl r d n rd rdn |
building | Verbundindex |
bvnumber | BV040249660 |
callnumber-first | Q - Science |
callnumber-label | QA188 |
callnumber-raw | QA188 |
callnumber-search | QA188 |
callnumber-sort | QA 3188 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 220 SK 620 |
classification_tum | MAT 154f |
ctrlnum | (OCoLC)795907092 (DE-599)BVBBV040249660 |
dewey-full | 512/.5 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512/.5 |
dewey-search | 512/.5 |
dewey-sort | 3512 15 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
edition | 1. publ. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02866nam a2200601zcb4500</leader><controlfield tag="001">BV040249660</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20190306 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">120613s2012 xxk |||| 00||| eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">2011053268</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780521898812</subfield><subfield code="c">hardback</subfield><subfield code="9">978-0-521-89881-2</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)795907092</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV040249660</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxk</subfield><subfield code="c">GB</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-91</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA188</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512/.5</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 220</subfield><subfield code="0">(DE-625)143224:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 620</subfield><subfield code="0">(DE-625)143249:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 154f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lemmens, Bas</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1022751735</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Nonlinear Perron-Frobenius theory</subfield><subfield code="c">Bas Lemmens ; Roger Nussbaum</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1. publ.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge [u.a.]</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2012</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XII, 323 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Cambridge tracts in mathematics</subfield><subfield code="v">189</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">"Sometimes in mathematics an innocent-looking observation opens up a new road to a fertile field. A nice example of such an observation is due to Garrett Birkhoff [23] and Hans Samelson [187], who remarked that one can use Hilbert's (projective) metric and the contraction mapping principle to prove some of the theorems of Perron and Frobenius concerning eigenvectors and eigenvalues of nonnegative matrices. This idea has been pivotal for the development of nonlinear Perron-Frobenius theory"-- Provided by publisher.</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Non-negative matrices</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Eigenvalues</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Eigenvectors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebras, Linear</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Differential Equations</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nichtnegative Matrix</subfield><subfield code="0">(DE-588)4310434-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Matrizentheorie</subfield><subfield code="0">(DE-588)4128970-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Eigenwert</subfield><subfield code="0">(DE-588)4151200-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Eigenvektor</subfield><subfield code="0">(DE-588)4151198-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Matrizentheorie</subfield><subfield code="0">(DE-588)4128970-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Nichtnegative Matrix</subfield><subfield code="0">(DE-588)4310434-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Eigenwert</subfield><subfield code="0">(DE-588)4151200-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Eigenvektor</subfield><subfield code="0">(DE-588)4151198-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nussbaum, Roger D.</subfield><subfield code="d">1944-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)172288282</subfield><subfield code="4">aut</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Cambridge tracts in mathematics</subfield><subfield code="v">189</subfield><subfield code="w">(DE-604)BV000000001</subfield><subfield code="9">189</subfield></datafield><datafield tag="856" ind1="4" ind2=" "><subfield code="u">http://assets.cambridge.org/97805218/98812/cover/9780521898812.jpg</subfield><subfield code="3">Cover image</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">LoC Fremddatenuebernahme</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=025105657&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-025105657</subfield></datafield></record></collection> |
id | DE-604.BV040249660 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T00:19:58Z |
institution | BVB |
isbn | 9780521898812 |
language | English |
lccn | 2011053268 |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-025105657 |
oclc_num | 795907092 |
open_access_boolean | |
owner | DE-384 DE-188 DE-29T DE-19 DE-BY-UBM DE-91 DE-BY-TUM |
owner_facet | DE-384 DE-188 DE-29T DE-19 DE-BY-UBM DE-91 DE-BY-TUM |
physical | XII, 323 S. |
publishDate | 2012 |
publishDateSearch | 2012 |
publishDateSort | 2012 |
publisher | Cambridge University Press |
record_format | marc |
series | Cambridge tracts in mathematics |
series2 | Cambridge tracts in mathematics |
spelling | Lemmens, Bas Verfasser (DE-588)1022751735 aut Nonlinear Perron-Frobenius theory Bas Lemmens ; Roger Nussbaum 1. publ. Cambridge [u.a.] Cambridge University Press 2012 XII, 323 S. txt rdacontent n rdamedia nc rdacarrier Cambridge tracts in mathematics 189 "Sometimes in mathematics an innocent-looking observation opens up a new road to a fertile field. A nice example of such an observation is due to Garrett Birkhoff [23] and Hans Samelson [187], who remarked that one can use Hilbert's (projective) metric and the contraction mapping principle to prove some of the theorems of Perron and Frobenius concerning eigenvectors and eigenvalues of nonnegative matrices. This idea has been pivotal for the development of nonlinear Perron-Frobenius theory"-- Provided by publisher. Includes bibliographical references and index Non-negative matrices Eigenvalues Eigenvectors Algebras, Linear MATHEMATICS / Differential Equations bisacsh Nichtnegative Matrix (DE-588)4310434-4 gnd rswk-swf Matrizentheorie (DE-588)4128970-5 gnd rswk-swf Eigenwert (DE-588)4151200-5 gnd rswk-swf Eigenvektor (DE-588)4151198-0 gnd rswk-swf Matrizentheorie (DE-588)4128970-5 s Nichtnegative Matrix (DE-588)4310434-4 s Eigenwert (DE-588)4151200-5 s Eigenvektor (DE-588)4151198-0 s DE-604 Nussbaum, Roger D. 1944- Verfasser (DE-588)172288282 aut Cambridge tracts in mathematics 189 (DE-604)BV000000001 189 http://assets.cambridge.org/97805218/98812/cover/9780521898812.jpg Cover image LoC Fremddatenuebernahme application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=025105657&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Lemmens, Bas Nussbaum, Roger D. 1944- Nonlinear Perron-Frobenius theory Cambridge tracts in mathematics Non-negative matrices Eigenvalues Eigenvectors Algebras, Linear MATHEMATICS / Differential Equations bisacsh Nichtnegative Matrix (DE-588)4310434-4 gnd Matrizentheorie (DE-588)4128970-5 gnd Eigenwert (DE-588)4151200-5 gnd Eigenvektor (DE-588)4151198-0 gnd |
subject_GND | (DE-588)4310434-4 (DE-588)4128970-5 (DE-588)4151200-5 (DE-588)4151198-0 |
title | Nonlinear Perron-Frobenius theory |
title_auth | Nonlinear Perron-Frobenius theory |
title_exact_search | Nonlinear Perron-Frobenius theory |
title_full | Nonlinear Perron-Frobenius theory Bas Lemmens ; Roger Nussbaum |
title_fullStr | Nonlinear Perron-Frobenius theory Bas Lemmens ; Roger Nussbaum |
title_full_unstemmed | Nonlinear Perron-Frobenius theory Bas Lemmens ; Roger Nussbaum |
title_short | Nonlinear Perron-Frobenius theory |
title_sort | nonlinear perron frobenius theory |
topic | Non-negative matrices Eigenvalues Eigenvectors Algebras, Linear MATHEMATICS / Differential Equations bisacsh Nichtnegative Matrix (DE-588)4310434-4 gnd Matrizentheorie (DE-588)4128970-5 gnd Eigenwert (DE-588)4151200-5 gnd Eigenvektor (DE-588)4151198-0 gnd |
topic_facet | Non-negative matrices Eigenvalues Eigenvectors Algebras, Linear MATHEMATICS / Differential Equations Nichtnegative Matrix Matrizentheorie Eigenwert Eigenvektor |
url | http://assets.cambridge.org/97805218/98812/cover/9780521898812.jpg http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=025105657&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV000000001 |
work_keys_str_mv | AT lemmensbas nonlinearperronfrobeniustheory AT nussbaumrogerd nonlinearperronfrobeniustheory |