Wind power in power systems:
Gespeichert in:
Weitere Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Chichester
Wiley
2012
|
Ausgabe: | 2. ed. |
Schlagworte: | |
Online-Zugang: | Cover image Inhaltsverzeichnis |
Beschreibung: | LXIII, 1049 S. Ill., graph. Darst., Kt. |
ISBN: | 9780470974162 |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV040126112 | ||
003 | DE-604 | ||
005 | 20131220 | ||
007 | t | ||
008 | 120509s2012 xxkabd| |||| 00||| eng d | ||
010 | |a 2011050039 | ||
020 | |a 9780470974162 |c hardback |9 978-0-470-97416-2 | ||
035 | |a (OCoLC)794590486 | ||
035 | |a (DE-599)BVBBV040126112 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
044 | |a xxk |c GB | ||
049 | |a DE-20 |a DE-83 |a DE-210 |a DE-91 |a DE-634 | ||
050 | 0 | |a TK1541 | |
082 | 0 | |a 621.31/2136 | |
084 | |a RB 10696 |0 (DE-625)142220:12826 |2 rvk | ||
084 | |a ZP 3710 |0 (DE-625)157969: |2 rvk | ||
084 | |a ERG 730f |2 stub | ||
245 | 1 | 0 | |a Wind power in power systems |c ed. by Thomas Ackermann |
250 | |a 2. ed. | ||
264 | 1 | |a Chichester |b Wiley |c 2012 | |
300 | |a LXIII, 1049 S. |b Ill., graph. Darst., Kt. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 4 | |a Wind power plants | |
650 | 4 | |a Wind power | |
650 | 7 | |a TECHNOLOGY & ENGINEERING / Power Resources / General |2 bisacsh | |
650 | 0 | 7 | |a Elektrizitätsversorgungsnetz |0 (DE-588)4121178-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Windkraftwerk |0 (DE-588)4128839-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Windenergie |0 (DE-588)4079329-1 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4143413-4 |a Aufsatzsammlung |2 gnd-content | |
689 | 0 | 0 | |a Windenergie |0 (DE-588)4079329-1 |D s |
689 | 0 | 1 | |a Elektrizitätsversorgungsnetz |0 (DE-588)4121178-9 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Windkraftwerk |0 (DE-588)4128839-7 |D s |
689 | 1 | 1 | |a Elektrizitätsversorgungsnetz |0 (DE-588)4121178-9 |D s |
689 | 1 | |5 DE-604 | |
700 | 1 | |a Ackermann, Thomas |d 1966- |0 (DE-588)1020387920 |4 edt | |
856 | 4 | |u http://catalogimages.wiley.com/images/db/jimages/9780470974162.jpg |3 Cover image | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=024983385&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-024983385 |
Datensatz im Suchindex
_version_ | 1804149089055539200 |
---|---|
adam_text | Titel: Wind power in power systems
Autor: Ackermann, Thomas
Jahr: 2012
Contents
Contributors xxxi
Abbreviations xlvii
Notation lvii
1 Introduction 1
Thomas Ackermann
2 Preface: Wind Power Myths Debunked 7
Michael Milligan, Kevin Porter, Edgar DeMeo, Paul Denholm,
Hannele Holttinen, Brendan Kirby, Nicholas Miller, Andrew Mills,
Mark O Malley, Matthew Schuerger and Lennart S dder
2.1 Can Grid Operators Deal with the Variability of Wind Power? 7
2.2 Does Wind Power Require Back-up Generation? 8
2.3 Aren t More C02 Emissions Generated with Wind Power in Power
Systems than Without, Due to Back-up Requirements? 9
2.4 Does Wind Power Require Storage? 9
2.5 Isn t the Existing Flexibility Already Fully Utilized? 12
2.6 How Often Does the Wind Stop Blowing Everywhere at the
Same Time? 13
2.7 To What Extent can Wind Power Production be Predicted? 14
2.8 Is it Expensive to Integrate Wind? 15
2.9 Doesn t Wind Power Production Require New Transmission,
and won t that Make Wind Expensive? 16
2.10 Does Wind Power have Capacity Credit? 16
2.11 Don t Wind Power Plants have Low Capacity Factors? 17
2.12 Is Wind Power Generation Cost-competitive with Coal or Nuclear? 17
2.13 Is there a Limit to How Much Wind Generation Capacity
can be Accommodated by the Grid? 18
2.14 Summary 19
Acknowledgment 20
References 20
viii Contents
Part A THEORETICAL BACKGROUND
3 Historical Development and Current Status of Wind Power 23
Thomas Ackermann
3.1 Introduction 23
3.2 Historical Background 24
3.2.1 Mechanical Power Generation 24
3.2.2 Electrical Power Generation 25
3.3 Current Status of Wind Power Worldwide 27
3.3.1 Overview of Grid-connected Wind Power Generation 27
3.3.2 Europe 27
3.3.3 North America 32
3.3.4 South and Central America 34
3.3.5 Asia and Pacific 36
3.3.6 Middle East and Africa 37
3.3.7 Overview of Stand-Alone Generation 38
3.3.8 Wind Power Economics 38
3.3.9 Environmental Issues 40
3.4 Status of Wind Turbine Technology 41
3.4.1 Design Approaches 42
3.5 Conclusions 44
Acknowledgments 44
References 44
4 Wind Power in Power Systems: An Introduction 47
Lennart S dder and Thomas Ackermann
4.1 Introduction 47
4.2 Power System History 47
4.3 Current Status of Wind Power in Power Systems 48
4.4 Network Integration Issues for Wind Power 49
4.5 Basic Electrical Engineering 50
4.6 Characteristics of Wind Power Generation 53
4.6.1 The Wind 54
4.6.2 The Physics 55
4.6.3 Wind Power Production 56
4.7 Basic Integration Issues Related to Wind Power 61
4.7.1 Consumer Requirements 62
4.7.2 Requirements from Wind Farm Operators 62
4.7.3 The Integration Issues 63
4.8 Conclusions 68
Appendix Mechanical Equivalent to Power System Operation with
Wind Power 68
A.l Introduction 69
A.2 Active Power Balance 69
A.3 Synchronous Machines 69
A.4 Asynchronous Machines 69
A.5 Power Electronic Interfaces 70
A.6 Frequency Control 70
Contents
A.7 Wind Power 70
A.8 Reactive Power Balance 70
A.9 Asynchronous Machines 71
A. 10 Capacitors 71
A. 11 Synchronous Machines 71
A. 12 Power Electronic Interfaces 71
References 72
5 Generators and Power Electronics for Wind Turbines 73
Anca D. Hansen
5.1 Introduction 73
5.2 State-of-the-Art Technologies 73
5.2.1 Overview of Wind Turbine Topologies 73
5.2.2 Overview of Power Control Concepts 74
5.2.3 State-of-the-Art Generators 75
5.2.4 State-of-the-Art Power Electronics 80
5.2.5 State-of-the-Art Market Penetration 82
5.3 Generator Concepts 90
5.3.1 Asynchronous (Induction) Generator 90
5.3.2 Synchronous Generator (SG) 93
5.3.3 Other Types of Generators 95
5.4 Power Electronic Concepts 96
5.4.1 Soft-starter 97
5.4.2 Capacitor Bank 97
5.4.3 Rectifiers and Inverters 97
5.4.4 Frequency Converters 98
5.5 Power Electronic Solutions in Wind Farms 100
5.6 Conclusions 102
References 102
6 Power System Impacts of Wind Power 105
Hannele Holttinen and Ritva Hirvonen
6.1 Introduction 105
6.2 Operation of the Power System 106
6.2.1 System Reliability 106
6.2.2 Frequency Control 107
6.2.3 Voltage Management 110
6.3 Wind Power Production and the Power System 110
6.3.1 Production Patterns of Wind Power 111
6.3.2 Variations of Production and the Smoothing Effect 112
6.3.3 Predictability of Wind Power Production 116
6.4 Effects of Wind Energy on the Power System 118
6.4.1 Short-term Effects on Reserves 119
6.4.2 Other Short-term Effects 123
6.4.3 Long-term Effects on the Adequacy of Network
and Power Capacity 125
6.4.4 Wind Power in Future Power Systems 127
x Contents
6.5 Conclusions 128
References 129
7 The Value of Wind Power 131
Lennart Soder
7.1 Introduction 131
7.2 The Value of a Power Plant 131
7.2.1 Operating Cost Value 131
7.2.2 Capacity Credit 132
7.2.3 Control Value 132
7.2.4 Loss Reduction Value 132
7.2.5 Grid Investment Value 132
7.3 The Value of Wind Power 132
7.3.1 The Operating Cost Value of Wind Power 133
7.3.2 The Capacity Credit of Wind Power 133
7.3.3 The Control Value of Wind Power 135
7.3.4 The Loss Reduction Value of Wind Power 139
7.3.5 The Grid Investment Value of Wind Power 141
7.4 The Market Value of Wind Power 141
7.4.1 The Market Operation Cost Value of Wind Power 142
7.4.2 The Market Capacity Credit of Wind Power 142
7.4.3 The Market Control Value of Wind Power 143
7.4.4 The Market Loss Reduction Value of Wind Power 149
7.4.5 The Market Grid Investment Value of Wind Power 150
7.5 Conclusions 154
References 155
Part B TECHNICAL REGULATIONS AND GRID
CODE VALIDATION
8 Power Quality Standards for Wind Turbines 159
John Olav Tande
8.1 Introduction 159
8.2 Power Quality Characteristics of Wind Turbines 160
8.2.1 Rated Data 160
8.2.2 Emission of Voltage Fluctuations and Flicker 160
8.2.3 Current Harmonics, Interharmonics and Higher
Frequency Components 162
8.2.4 Response to Voltage Dips 163
8.2.5 Active Power Capabilities and Control 163
8.2.6 Reactive Power Capabilities and Control 163
8.2.7 Grid Protection and Reconnection Times 164
8.3 Impact on Voltage Quality 164
8.3.1 General 164
8.3.2 Case Study Specifications 165
8.3.3 Slow Voltage Variations 165
8.3.4 Flicker 167
Contents xi
8.3.5 Voltage Dips 169
8.3.6 Harmonic Voltage 170
8.4 Discussion 171
8.5 Conclusion 172
References 172
9 Measurement of Electrical Characteristics 175
Fritz Santjer
9.1 Introduction 175
9.2 Power Quality Measurement Procedures 176
9.3 Specification 178
9.3.1 Flicker 178
9.3.2 Voltage Fluctuations and Flicker during
Switching Operations 180
9.3.3 Harmonics 182
9.3.4 Active Power Control 185
9.3.5 Reactive Power Control 187
9.3.6 Response to Temporary Voltage Drops 190
9.3.7 Grid Protection 191
9.4 Conclusions 192
References 193
10 Practical Experience with Power Quality and Wind Power 195
Ake Larsson
10.1 Introduction 195
10.2 Voltage Variations 195
10.3 Flicker 197
10.3.1 Continuous Operation 198
10.3.2 Switching Operations 199
10.4 Harmonics 203
10.5 Transients 204
10.6 Frequency 206
10.7 Conclusions 207
References 208
11 Technical Regulations for the Interconnection of Wind Power
Plants to the Power System 209
Julija Matevosyan, Sigrid M. Bolik and Thomas Ackermann
11.1 Introduction 209
11.2 Overview of Technical Regulations 209
11.2.1 Regulations for Networks below 100 kV 212
11.2.2 Regulations for Networks above 100 kV 214
11.2.3 Combined Regulations 215
11.2.4 Harmonization Efforts 216
11.3 Comparison of Technical Interconnection Regulations 218
11.3.1 Active Power Control/Start-up and Shut-down 218
11.3.2 Frequency Control 218
11.3.3 Voltage Control 221
xii Contents
11.3.4 Voltage Quality 225
11.3.5 Requirements for the Fault Ride-through Capability 225
11.3.6 Modelling Information and Verification 229
11.3.7 Discussion of Interconnection Regulations 232
11.4 New Interconnection Requirements at Wind Plant Level 233
11.4.1 System Protection 234
11.4.2 Frequency Control (only for WPPs 25 MW) 234
11.4.3 Absolute Power Production Constraint 234
11.4.4 Delta Production Constraint (only for WPPs 25 MW) 234
11.4.5 Power Gradient Constraint 237
11.4.6 System Protection 237
11.4.7 Synthetic Inertia 237
11.5 Interconnection Practice 237
11.6 Conclusions 238
References 238
12 Performance Validation and Certification for Grid Codes 241
Martin Schellschmidt, Stephan Adloff and Markus Fischer
12.1 Introduction 241
12.2 History of the Certification Process 242
12.3 Steps of the Unit Certification Process 244
12.3.1 Analysis of Requirements 244
12.3.2 Implementation of the Requirements 245
12.3.3 Unit Certification 245
12.3.4 Model Validation 246
12.3.5 Report and Requirements 246
12.3.6 Response to Temporary Voltage Drop 246
12.3.7 External Influences on the Certification Process 249
12.4 Steps in the Plant Certification Process 250
12.4.1 Workflow 250
12.5 Experience with the Certification Process in Germany 252
12.5.1 Adaption of Guidelines 252
12.5.2 Experiences during the Certification of WFs 253
12.5.3 Influence of Changes of Guidelines 253
12.5.4 Certification Institutes 254
12.6 Performance Validation in Canada and Spain 254
12.6.1 Performance Validation in Quebec 254
12.6.2 Performance Validation in Spain 255
12.7 Conclusions 258
References 258
Part C WIND POWER PLANT AND TRANSMISSION ISSUES
13 Electrical Design of a Wind Power Plant 263
Nicholas Miller, Reigh Walling and Richard Piwko
13.1 Introduction 263
13.2 Wind Plant Collection System Design Objectives 263
13.2.1 Availability and Reliability 264
Contents xiii
13.2.2 Economic Optimization 264
13.2.3 Developer Business Model 265
13.3 Wind Plant Performance Requirements 265
13.4 Economic Evaluation Factors 266
13.4.1 Derivation of Economic Evaluation Factors 267
13.5 Collection System Electrical Design 270
13.5.1 Wind Plant Topology 270
13.5.2 Power Transformer Application 272
13.5.3 Collector Feeder Cables and Lines 275
13.5.4 Grounding (Earthing) and Surge Protection 276
13.5.5 Collection System Reactive Power and Voltage Design 277
13.5.6 Protection 280
13.5.7 Harmonics 280
13.6 Plant Control and Communication 281
13.6.1 Wind Plant Reactive Power Capability and Requirements 281
13.6.2 Wind Plant Reactive Power Control 283
13.6.3 Voltage Control 284
13.6.4 Active Power Control Requirements 285
13.6.5 Communications 290
References 292
14 Transmission Systems for Offshore Wind Power Plants and Operation
Planning Strategies for Offshore Power Systems 293
Thomas Ackermann, Antje Orths and Krzysztof Rudion
14.1 Introduction 293
14.2 General Electrical Aspects 297
14.2.1 Offshore Substations 298
14.2.2 Redundancy 300
14.3 Transmission System to Shore 301
14.3.1 High-Voltage Alternating-Current Transmission 302
14.3.2 Line-Commutated Converter-Based High-Voltage
Direct-Current Transmission 303
14.3.3 Voltage Source Converter-Based High-Voltage
Direct-Current Transmission 305
14.3.4 Comparison 307
14.4 From a Cluster Approach to Offshore Transmission Grid:
The Kriegers Flak Project 312
14.5 Offshore Grid Systems 312
14.5.1 Offshore Power System - Concept 313
14.5.2 Operational Issues for an Offshore Power System 314
14.5.3 Test System and Study Cases 316
14.6 New System Solutions for Offshore Wind Power Plants 320
14.6.1 Use of Low Frequency 320
14.6.2 DC Solutions Based on Wind Turbines with AC Generators 321
14.6.3 DC Solutions Based on Wind Turbines with DC Generators 321
14.7 Alternative Transmission Solutions 322
14.8 Conclusions 322
References 323
xiv Contents
15 New Cable Systems for Offshore Wind Power Plants 329
Heinrich Brakelmann and Jan Bruggmann
15.1 Introduction 329
15.2 Technical Background 329
15.3 Power Transmission with Bipolar HVAC Cable Systems 331
15.4 Voltage Definitions and Transformer Groups 332
15.4.1 Voltage Definition 332
15.4.2 Transformer Groups 333
15.5 Submarine Cable Connections 334
15.6 Examples 337
15.6.1 Example 1: Transmission of 2000 MW over a Distance
of 110 km Offshore and 60 km Onshore 337
15.6.2 Example 2: Transmission of 1200 MW over a Distance
of 70 km Offshore and 40 km Onshore 339
15.6.3 Example 3: Transmission of 2400 MW over a Distance
of 110 km Offshore and 50 km Onshore 339
15.7 HVAC Bipolar Land Cable Systems 340
15.8 Summary 343
References 343
16 New Control Concept for Offshore Wind Power Plants:
Constant-Speed Turbines on a Grid with Variable Frequency 345
Eckehard Troster
16.1 Introduction 345
16.2 Model 346
16.3 Power Limitation 347
16.4 The Park-Variable Concept 347
16.4.1 Maximum Power Point Tracking 348
16.4.2 Pitch Control of the Park-Variable Concept 349
16.5 Calculating the Energy Yield 353
16.6 Results 354
16.6.1 Dynamic Power Curves 354
16.6.2 Energy Yield 355
16.7 Conclusion 358
References 359
Part D INTERNATIONAL STUDIES
17 Overview of Integration Studies - Methodologies and Results 363
Hannele Holttinen
17.1 Introduction 363
17.2 Wind Integration Study Set-up and Penetration Level
of Wind Power 364
17.2.1 Issues Studied and Set-up 364
17.2.2 Different Penetration-Level Metrics 365
17.3 Methodologies for Wind Integration Studies 366
17.3.1 Reserve Requirements 367
17.3.2 Dispatch and Unit Commitment 369
Contents
17.3.3 Grid Impacts 370
17.3.4 Capacity Value 371
17.4 Results from Integration Studies 373
17.4.1 Short-Term Reserve Requirements 373
17.4.2 Balancing Costs 375
17.4.3 Other Results on Balancing 377
17.4.4 Grid 378
17.4.5 Capacity Value 380
17.5 Recommendations 382
17.6 Conclusions and Future Work 383
References 384
18 Two Reference Studies on European Transmission for Wind Integration:
TradeWind and EWIS 387
Frans Van Hulle
18.1 Introduction 387
18.1.1 Transmission Challenges for European Wind Integration 387
18.1.2 Two European Transmission Studies for Wind Integration 388
18.2 TradeWind 390
18.2.1 Introduction 390
18.2.2 Scope and Objectives of TradeWind 391
18.2.3 Method and Approach of TradeWind 392
18.2.4 Findings of TradeWind 394
18.2.5 Concluding Remarks 398
18.3 The European Wind Integration Study EWIS 399
18.3.1 Introduction 399
18.3.2 Scope and Objectives of the EWIS Project 400
18.3.3 Approach and Method of the EWIS Study 400
18.3.4 Findings - Recommendations of EWIS 402
18.3.5 Conclusions 408
18.4 Future Transmission Needs in Europe from the Studies 408
18.4.1 Technical: Transmission Upgrade Measures 408
18.4.2 Economic Aspects: Costs and Benefits 410
18.5 Concluding Remarks 410
18.5.1 General Conclusion 410
18.5.2 Experience from the Studies 411
Acknowledgments 411
References 411
19 Transmission Planning for Wind Energy in the USA: Status and Prospects 413
J. Charles Smith, Dale Osborn, Richard Piwko, Robert Zavadil,
Brian Parsons, Lynn Coles, David Hawkins, Warren Lasher
and Bradley Nickell
19.1 Introduction 413
19.2 Transmission Planning for Energy Resources 414
19.2.1 Transmission Planning for Large Amounts of Energy
Resources: Economic Planning 416
19.3 Regional Planning Efforts: Status and Prospects 417
xvi Contents
19.3.1 Eastern Interconnection Joint Coordinated System Plan (JCSP) 417
19.3.2 Eastern Wind Integration and Transmission Study 418
19.3.3 Western Interconnection 421
19.3.4 Western Renewable Energy Zones 423
19.3.5 Western Wind and Solar Integration Study 423
19.3.6 CAISO and California s RETI 426
19.3.7 Electric Reliability Council of Texas (ERCOT) 429
19.4 National Transmission Policy 431
19.4.1 Funding Opportunity Announcement 432
19.4.2 Project Benefits 433
19.4.3 Eastern Interconnection Planning Collaborative (EIPC) 433
19.4.4 Western Interconnection Planning 435
19.4.5 ERCOT Long-Term Study Task Force (LTSTF) 435
19.5 Summary and Conclusions 435
Acknowledgments 436
References 436
20 Wind Power in Areas with Limited Transmission Capacity 439
Julija Matevosyan
20.1 Introduction 439
20.2 Transmission Limits 440
20.2.1 Thermal Limit 440
20.2.2 Voltage Stability Limit 442
20.2.3 Transient Stability 445
20.3 Transmission Capacity: Methods of Determination 445
20.3.1 Determination of Cross-Border Transmission Capacity 445
20.3.2 Determination of Transmission Capacity within the Country 447
20.4 Measures to Increase Transmission Capacity 447
20.4.1 Soft Measures 447
20.4.2 Possible Reinforcement Measures: Thermal Limit 448
20.4.3 Possible Reinforcement Measures: Voltage Stability Limit 450
20.4.4 Converting AC Transmission Lines to DC for Higher
Transmission Ratings 450
20.5 Impact of Wind Generation on Available Transmission Capacity 450
20.6 Alternatives to Grid Reinforcement for the Integration of Wind Power 452
20.6.1 Regulation Using Existing Generation Sources 452
20.6.2 Wind Energy Curtailment 453
20.7 Conclusions 462
References 462
21 Wind Power and Storage 465
Aidan Tuohy and Mark O Malley
21.1 Introduction 465
21.2 Storage Technologies 465
21.2.1 Pumped Hydro Storage 466
21.2.2 Compressed Air Energy Storage (CAES) 467
21.2.3 Battery Storage 467
21.2.4 Fly wheel 468
Contents xvii
21.3 Storage for Wind Integration 468
21.3.1 Applications of Storage with High Wind 469
21.3.2 Integration of Wind Generation with Storage:
Literature Review 471
21.4 Studies on Operation of Storage in Systems with High
Wind Penetration 473
21.4.1 Curtailment 474
21.4.2 Costs 478
21.4.3 Operation of Storage and Effects on System 481
21.5 Discussion 483
21.6 Conclusions 485
References 485
22 Economic Aspects of Wind Power in Power Systems 489
Poul Erik Morthorst and Thomas Ackermann
22.1 Introduction 489
22.2 Costs for Network Connection and Network Upgrading 489
22.2.1 Shallow Connection Charges 490
22.2.2 Deep Connection Charges 493
22.2.3 Shallowish Connection Charges 493
22.2.4 Discussion of Technical Network Limits 494
22.2.5 Summary of Network Interconnection and Upgrade Costs 495
22.3 System Operation Costs in a Deregulated Market 496
22.3.1 Primary Control Issues 496
22.3.2 Treatment of System Operation Costs 497
22.3.3 Secondary Control Issues 498
22.3.4 Electricity Market Aspects 500
22.4 Example of Nord Pool 500
22.4.1 Nord Pool 501
22.4.2 Wind Power and the Power Exchange 504
22.4.3 Wind Power and the Balancing Market 510
22.5 Conclusions 515
References 516
Part E POWER SYSTEM INTEGRATION EXPERIENCE
23 Wind Power in the Danish Power System 519
Antje G. Orths and Peter B0rre Eriksen
23.1 Introduction 519
23.2 System Overview 521
23.2.1 Two Electric Power Systems: Organization and
Technical Structure 521
23.2.2 Structure of the Energy Production System 524
23.3 Balancing Wind Power in Daily Operation 525
23.3.1 Different Balancing Rules in Both Systems 526
23.3.2 Proper Market Tools and Operational Issues 527
23.3.3 The Nordic Market Design for Electricity Trading 529
23.3.4 Different Markets: Nordic Area 530
Contents
23.3.5 Interaction between Technical Rules and the Market 534
23.3.6 Handling of the Balance Task 535
23.3.7 Optimal System Operation Using Forecasts 535
23.4 System Analysis and Modelling Issues 538
23.4.1 Future Development of Wind Power 538
23.4.2 Necessary Analyses 539
23.4.3 Modelling Tools 539
23.4.4 Case Study: Analysis of A Visionary Danish Energy
Policy 2025 540
23.5 Conclusions and Lessons Learned 546
References 547
24 Wind Power in the German Network: Present Status and
Future Challenges of Maintaining Quality of Supply 549
Matthias Luther and Wilhelm Winter
24.1 Overview 549
24.2 Wind Power Integration in Germany 550
24.2.1 Historical Development 550
24.2.2 Current Status 550
24.2.3 Grid Code Development and Status 551
24.2.4 Expected Future Development 551
24.2.5 Offshore Wind Power 552
24.3 Wind Power Flow Patterns and Reliable System Operation 553
24.3.1 Background 553
24.3.2 Challenges in the European Context 553
24.4 Network Planning and Network Security Issues 555
24.4.1 Background 555
24.4.2 Requirements 555
24.4.3 Grid Capability and Flexibility 556
24.4.4 Use of Large-scale Energy Storage 557
24.4.5 Frequency Stability 558
24.4.6 Transient Stability and Voltage Stability 559
24.4.7 Steady-State Stability 559
24.5 System Performance and System Compliance 560
24.5.1 Simplified Requirements for Noncontrollable Generation 561
24.5.2 Active Power Recovery 562
24.6 Requirements to Ensure System Security 562
24.6.1 FRT Capability 564
24.6.2 Fast-Acting Voltage Control 564
24.6.3 System Monitoring and Emergency Control Actions 565
24.6.4 Offshore Power Generation 566
24.7 Summary: Wind Power in the German Network 566
Acknowledgments 567
References 567
25 Wind Integration in Portugal 569
Ana Estanqueiro
25.1 Introduction 569
Contents
25.2 The Portuguese Power System 570
25.2.1 The Energy Mix 570
25.2.2 System Innovative Characteristics 571
25.3 Planning the Power System for High Wind Penetration 573
25.3.1 A New Holistic Approach to Transmission
Network Planning 574
25.3.2 Wind Generation Aggregation Centres: the Operational
Basis for a VWPP 577
25.3.3 LVRTF and Additional Remote Reactive Power Control 579
25.3.4 Wind Power Added Control: Overcapacity
and Unit Curtailment 580
25.4 Power System Studies for a Secure Integration of Wind Generation 581
25.4.1 Transient Stability Assessment of the Portuguese Transmission
Network 581
25.4.2 Adding Flexibility to the Power System: Storage
and Transmission Reinforcement 582
25.4.3 Power Reserves and Wind Power Security of Supply 584
25.5 Operational Experience of Extreme Penetration of Wind Power
in Portugal 585
25.5.1 Extreme Wind Penetration in the 2009-2010 Winter 586
25.5.2 Analysis of the Power System Operation under Extreme
Wind Penetration 588
25.5.3 Dynamic Management of Reserves 590
25.5.4 System and Market Operation and Adequacy 591
25.6 Synthesis 593
References 593
26 Wind Power Integration Experience in Spain 595
Juan Ma. Rodriguez Garcia, Olivia Alonso Garcia and
Miguel de la Torre Rodriguez
26 A Introduction 595
26.2 Wind Capacity in Spain 597
26.3 Network Arrangements for Wind Power Development 599
26.4 Technical Requirements for Massive Wind Power Integration 602
26.4.1 Validation Procedure 605
26.5 Market Arrangements for Wind Power Integration 606
26.6 Operational Arrangements for Wind Power Integration 608
26.6.1 Monitoring and Controllability of Wind Production 608
26.6.2 Implication of Wind Industry 609
26.6.3 Wind Power Forecasting 610
26.6.4 Balancing Services 612
26.7 Future Challenges Associated with Wind Power Integration 617
26.7.1 Generation Adequacy with Respect to Demand and
Dispatching Feasibility 617
26.7.2 Generation and Demand Flexibility, Storage and
Interconnection Capacity 618
26.8 Conclusions and Lessons Learned 620
References 621
Contents
27 Maximizing Renewable Generation on the Power System
of Ireland and Northern Ireland 623
Jonathan O Sullivan
27.1 Introduction 623
27.2 The Ireland and Northern Ireland Power System 624
27.2.1 Energy mix in Ireland and Northern Ireland 624
27.2.2 The Ireland and Northern Ireland Power System
in 2010 624
27.3 Deregulation and the First European Energy Package 625
27.3.1 Structural Transformation 625
27.3.2 Renewable Supports and Growth of Wind 626
27.3.3 Operational Experience to Date 627
27.4 The Development of Renewable Policy 2020 Targets and Beyond 629
27.5 Operational Studies 632
27.5.1 Frequency Stability 632
27.5.2 Transient Stability 634
27.5.3 Operational Studies Conclusions 636
27.6 Impact on the Operation of the Power System 636
27.7 Programme for a Secure, Sustainable Power System 638
27.7.1 Infrastructure 638
27.7.2 Developing Appropriate Operational Policies 640
27.7.3 Portfolio Performance 643
27.7.4 Holistic Market Approach 645
27.8 Conclusion 646
References 646
28 Wind Power in the Power System in Texas 649
Henry Durrwachter and Warren Lasher
28.1 Overview 649
28.1.1 The Texas Electric System 649
28.1.2 ERCOT Transmission Access 651
28.1.3 ERCOT Market Design 651
28.1.4 Regulatory Bodies 652
28.2 Wind Development in Texas 653
28.2.1 Wind Resources in Texas 653
28.2.2 Renewable Portfolio Standard 654
28.2.3 Competitive Renewable Energy Zones 654
28.2.4 Potential Future Wind Development 655
28.3 Wind Integration Issues 656
28.3.1 Background 656
28.3.2 Reactive Capability 656
28.3.3 Ramp Rates 658
28.3.4 Low-Voltage Ride-Through 659
28.3.5 Frequency Response 660
28.3.6 Ancillary Service Requirements 660
28.3.7 Production Forecasting 661
28.3.8 Capacity Value of Wind 662
28.4 Market Impacts 662
Contents xxi
28.4.1 Energy Prices 662
28.4.2 Transmission Congestion 663
28.5 Lessons Learned 663
28.6 Next Steps 664
28.6.1 Future Wind Market Impacts 665
References 666
29 Wind Power in the New Zealand Power System 667
Ray Brown
29 A Introduction 667
29.2 Overview of the New Zealand Power System 668
29.2.1 Generation and Demand Levels 669
29.2.2 New Zealand s Wind Resource 670
29.2.3 New Zealand s Market Structure 670
29.2.4 The New Zealand Grid Code and Wind 671
29.3 Overview of Wind Power Installations in New Zealand 672
29.4 Technology Progression 673
29.5 Case Study: West Wind Wind Farm 674
29.5.1 Transmission System Description 674
29.5.2 On-site Reticulation 675
29.5.3 Power System Studies and Performance
Requirements 676
29.5.4 Experience from a Grid Event 678
29.5.5 Conclusion 680
29.6 Case Study: White Hill Wind Farm 680
29.6.1 Transmission System Description 681
29.6.2 Initial Investigations 682
29.6.3 Detailed Design and Enhancement Options 683
29.6.4 Conclusion 685
29.7 Future Challenges and the Next Steps 685
29.7.1 Market Challenges 685
29.7.2 Ancillary Service Challenges 686
29.7.3 Frequency-Range Challenges 687
29.8 Conclusion 687
References 688
30 Large-Scale Wind Power Integration into the Chinese Power System 689
Yongning Chi, Then Wang, Yan Li and Weisheng Wang
30.1 Introduction 689
30.1.1 The Large Regional Power Grids and Power
Sources Structure in China 689
30.1.2 Policy Incentives for Wind Power in China 691
30.1.3 Wind Power Development Status and Centralized
Characteristics in China 691
30.2 Grid Integration Impact of High Wind Power Penetration 692
30.2.1 Limited Transmission Capacity of Power Networks 692
30.2.2 System-wide Voltage Stability Deterioration 693
xxii Contents
30.2.3 Power System Transient Stability 694
30.2.4 Power Balancing and Dispatching Difficulty 694
30.3 Solutions for the Grid Integration of Large-scale Wind Power 696
30.3.1 Power Networks Reinforcement 696
30.3.2 Reactive Power Compensation and Voltage Controllability 697
30.3.3 Low-Voltage Ride-Through Capability to Strengthen
the Power System Stability 697
30.3.4 Wind Power Prediction and Unit Commitment
Optimization 698
30.3.5 Chinese Grid Code Requirements to Wind Farm 699
30.4 Grid Compliance Testing Technology 702
30.4.1 LVRT and Grid Connection Testing of Wind Turbine 702
30.4.2 Grid Connection Procedure Including Wind Power
Plant LVRT Verification 703
30.4.3 National Wind Power Integration Research and
Testing Centre 704
30.5 Smart Grid and Wind Power in China 704
30.5.1 Concept of a Strong Smart Grid 704
30.5.2 Wind Power Plan 2020 for China 705
30.6 Conclusions 705
References 706
31 Isolated Systems with Wind Power 707
E. Ian Baring-Gould and Per Lundsager
31.1 Introduction 707
31.2 Isolated Power Systems 708
31.2.1 System Categorization 709
31.2.2 System Concepts and Configurations 709
31.3 Detailed Overview of Wind-Diesel Power Systems 713
31.3.1 Basic Considerations and Constraints for Wind-Diesel
Power Stations 713
31.3.2 Wind Contribution 715
31.3.3 Power Balance 717
31.3.4 Loads and Load Control 718
31.3.5 The Role of Storage in Wind-Diesel Power Stations 719
31.3.6 Diesel Engines in Wind-Diesel Power Stations 720
31.3.7 Wind Turbines in Wind-Diesel Power Stations 721
31.4 Systems and Experience 721
31.4.1 Toksook Bay, Alaska: Medium-Contribution Wind-Diesel
Power System 722
31.4.2 St Paul, Alaska: High-Contribution Wind-Diesel
Power System 722
31.4.3 Cape Verde: the Three Major National Power Systems 723
31.4.4 Australia: Wind-Diesel Power Stations in Denham
and Coral Bay 724
31.5 Wind Power Impact on Power Quality 724
31.5.1 System Stability and Power Quality 724
31.5.2 Distribution Network Voltage Levels 726
Contents
31.5.3 Power and Voltage Fluctuations 727
31.5.4 Power System Operation 728
31.6 System Modelling Requirements 728
31.6.1 Requirements and Applications 729
31.7 Issues During the Application of Wind-Diesel Systems 730
31.7.1 Cost of Energy and Economics 730
31.7.2 Consumer Demands in Isolated Communities 732
31.7.3 Standards, Guidelines and Project Development Approaches 732
31.7.4 Retrofitting Existing Diesel Plants 733
31.7.5 Technical Experience 734
31.8 Conclusions and Recommendations 734
References 735
32 Wind Farms in Weak Power Networks in India 739
Poul S0rensen
32 A Introduction 739
32.2 Network Characteristics 741
32.2.1 Transmission Capacity 741
32.2.2 Steady-State Voltage and Outages 742
32.2.3 Frequency 743
32.2.4 Harmonic and Interharmonic Distortions 744
32.2.5 Reactive Power Consumption 744
32.2.6 Voltage Imbalance 745
32.3 Wind Turbine Characteristics 745
32.4 Wind Turbine Influence on Grids 745
32.4.1 Steady-State Voltage 746
32.4.2 Reactive Power Consumption 746
32.5 Grid Influence on Wind Turbines 748
32.5.1 Power Performance 748
32.5.2 Safety 749
32.5.3 Structural Lifetime 750
32.5.4 Stress on Electric Components 750
32.5.5 Reactive Power Compensation 750
32.6 Conclusions 751
References 751
33 Wind Power Prediction 753
Bernhard Ernst
33.1 Introduction 753
33.2 Forecast Horizons 754
33.3 Principle of Wind Power Prediction Tools 754
33.4 Day-Ahead Prediction 756
33.4.1 Numerical Weather Prediction 756
33.4.2 Online Measurement of Weather Data and
Power Output 757
33.5 Ensemble Forecast Models/Combination of Forecast Models 757
33.6 Nowcasting and Ramp Forecasting 760
33.6.1 Ramp Forecasting 760
xxiv Contents
33.7 Forecast Error Evaluation 761
33.8 Lessons Learned during Recent Years 763
33.9 Future Challenges 765
References 765
Part F DYNAMIC MODELLING OF WIND TURBINES FOR POWER
SYSTEM STUDIES
34 Introduction to the Modelling of Wind Turbines 769
Hans Knudsen and J0rgen Nygard Nielsen
34.1 Introduction 769
34.2 Basic Considerations Regarding Modelling and Simulations 769
34.3 Overview of Aerodynamic Modelling 770
34.3.1 Basic Description of the Turbine Rotor 770
34.3.2 Different Representations of the Turbine Rotor 775
34.4 Basic Modelling Block Description of Wind Turbines 777
34.4.1 Aerodynamic System 778
34.4.2 Mechanical System 778
34.4.3 Generator-and-Power-Electronics Drive Concepts 779
34.4.4 Pitch Servo 782
34.4.5 Main Control System 782
34.4.6 Protection Systems and Relays 783
34.5 Per Unit Systems and Data for the Mechanical System 784
34.6 Different Types of Simulations and Requirements for Accuracy 788
34.6.1 Simulation Work and Required Modelling Accuracy 789
34.6.2 Different Types of Models and Simulations 790
34.7 Conclusions 796
References 796
35 A Generic Wind Power Plant Model 799
Abraham Ellis, Yuriy Kazachkov, Juan Sanchez-Gasca,
Pouyan Pourbeik, Eduard Muljadi, Michael Behnke,
Jens Fortmann and Slavomir Seman
35.1 Introduction 799
35.2 Power Flow Representation and Equivalencing 800
35.3 WECC Generic Dynamic Models 802
35.3.1 Generic Type I Model 802
35.3.2 Generic Type II Model 804
35.3.3 Generic Type III Model 804
35.3.4 Generic Type IV Model 809
35.4 Generic Model Validation 812
35.4.1 Example of Successful Generic WTG Model Validation 813
35.4.2 Need for Understanding Measurements Errors in
the Validation Process 816
35.5 Known Issues and Areas of Improvement 817
35.5.1 Representation of Pitch Control for Type I and
Type II WTGs 817
35.5.2 Generalization of Type III and Type IV WTG Control Structure 817
Contents
35.5.3 DC Link Dynamics, Unbalanced Fault Conditions 818
35.5.4 Active Power Control 819
35.6 Outlook 819
References 819
36 Reduced-Order Modelling of Wind Turbines 821
Katherine Elkington, J.G. (Han) Slootweg, Mehrdad Ghandhari and Wil L. Kling
36.1 Introduction 821
36.2 Power System Dynamics Simulation 821
36.3 Current Wind Turbine Types 822
36.4 Modelling Assumptions 823
36.5 Model of a Constant-Speed Wind Turbine 824
36.5.1 Model Structure 824
36.5.2 Wind Speed Model 825
36.5.3 Rotor Model 827
36.5.4 Shaft Model 829
36.5.5 Generator Model 830
36.6 Model of a Wind Turbine with a Doubly Fed Induction Generator 832
36.6.1 Model Structure 832
36.6.2 Shaft Model 833
36.6.3 Rotor Model 833
36.6.4 Generator Model 833
36.6.5 Converter Model 835
36.6.6 Protection System Model 836
36.6.7 Rotor Speed Controller Model 837
36.6.8 Pitch Angle Controller Model 838
36.6.9 Terminal Voltage Controller Model 839
36.7 Model of a Wind Turbine with a Synchronous Generator 840
36.7.1 Generator Model 840
36.7.2 Converter Model 842
36.7.3 Rotor Speed Controller Model 842
36.7.4 Terminal Voltage Controller Model 843
36.8 Model Response 845
36.9 Conclusions 845
References 845
37 High-Order Models of Doubly Fed Induction Generators 849
Eva Centeno Lopez and Jonas Persson
37.1 Introduction 849
37.2 Advantages of Using a Doubly Fed Induction Generator 850
37.3 The Components of a Doubly Fed Induction Generator 850
37.4 Machine Equations 851
37.4.1 The Vector Method 851
37.4.2 Notation of Quantities 854
37.4.3 Voltage Equations of the Machine 854
37.4.4 Flux Equations of the Machine 856
37.4.5 Mechanical Equations of the Machine 857
37.4.6 Mechanical Equations of the Wind Turbine 859
xxvi Contents
37.5 Voltage-Source Converter 859
37.6 Sequencer 861
37.7 Simulation of the Doubly Fed Induction Generator 861
37.8 Reducing the Order of the Doubly Fed Induction Generator 862
37.9 Conclusions 863
References 864
38 Full-Scale Verification of Dynamic Wind Turbine Models 865
Vladislav Akhmatov
38.1 Introduction 865
38.2 General Validation Procedure 866
38.3 Measured Parameters and Conversion 868
38.3.1 Balanced RMS Validation 868
38.3.2 Unbalanced RMS Validation 870
38.4 Validation Types 871
38.4.1 Initial Conditions 871
38.4.2 Scheduled Tests 871
38.4.3 On-site Tests 876
38.4.4 Forced-Event Records 881
38.4.5 Partial Validation 883
38.5 Further Validation Specifications 887
38.6 Conclusions 888
References 889
39 Impacts of Wind Power on Power System Stability 891
Eknath Vittal, Andrew Keane, J.G. Slootweg and Wil Kling
39.1 Power System Stability and Security 891
39.2 Rotor Angle Stability 892
39.2.1 Small-Signal Rotor Angle Stability 893
39.2.2 Transient Rotor Angle Stability 895
39.3 Voltage Stability 897
39.3.1 Short-Term Large-Disturbance Voltage Stability 899
39.3.2 Long-Term Small-Disturbance Voltage Stability 903
39.4 Frequency Stability 906
39.4.1 Frequency-Response Time Frames 907
39.4.2 Response of Wind Turbine Types to a Change
in Grid Frequency 907
39.4.3 Potential Contribution of Wind Generation for
Frequency Response 908
39.5 Dynamic Behaviour of Wind Power Plants 909
39.6 Conclusions 911
References 911
40 Modelling of Large Wind Power Plants 913
Vladislav Akhmatov and Bjorn Andresen
40.1 Introduction 913
40.1.1 Main Outline 914
Contents xxvii
40.2 Detailed Modelling and Short-Term Stability 915
40.2.1 Area of Application 915
40.2.2 Wind Power Plant Model 915
40.2.3 Fault Conditions 917
40.2.4 Fault Ride-Through Capability 917
40.2.5 Response of a Large Wind Power Plant 919
40.2.6 Final Remarks 920
40.3 Aggregated Modelling and Fault Ride-Through 921
40.3.1 Area of Application 922
40.3.2 Voltage Stability Investigations 922
40.3.3 Wind Power Plant Model and Fault Ride-Through 923
40.3.4 Land-Based Wind Turbines and Reactive
Compensation 925
40.3.5 Final Remarks 925
40.4 Wind Power Plant Controllers 926
40.4.1 Ancillary Services 926
40.4.2 Voltage and Reactive Power Control 927
40.4.3 Frequency and Active Power Control 929
40.4.4 Plant Controller Model Implementation 930
40.5 Conclusions 931
References 932
Part G Future Issues
41 Benefits of Active Management of Distribution Systems 937
Goran Strbac, Predrag Djapic, Thomas Bopp and Nick Jenkins
41.1 Background 937
41.2 Active Management 938
41.2.1 Voltage-Rise Effect 938
41.2.2 Active Management Control Strategies 939
41.3 Quantifying the Benefits of Active Management 941
41.3.1 Introduction 941
41.3.2 Case Studies 942
41.4 Conclusions 949
References 950
42 Wind Power and the Smart Grid 951
J.G. Slootweg and Thomas Ackermann
42 A Introduction 951
42.2 (Trying to) Define Smart Grids 952
42.3 Why Smarten the Grid? And Why Now (or Why Not)? 955
42.4 Goals and Concepts 957
42.4.1 Actors and their Goals 957
42.4.2 Smart Grid Concepts 958
42.5 Wind Power and Smart Grids 962
42.5.1 Market and Network Impacts of Wind Power 963
42.5.2 Wind Power in the Smart Grid Concepts 964
42.6 Practical Application: The Danish Cell Controller Pilot Project 966
xxviii_____________________________________________________Contents
42.6.1 Introduction to the Cell Project 966
42.6.2 The Grid-Oriented Part of the Cell Project 967
42.6.3 The Market-Oriented Part of the Cell Project 968
42.6.4 The Cell Controller Architecture 969
42.6.5 The Field Tests 970
42.7 Conclusions 971
Acknowledgments 972
References 972
43 Reactive Power Capability and Voltage Control with Wind Turbines 975
Volker Diedrichs, Alfred Beekmann and Marcel Kruse
A3 A Relevance and Design Paradigm 975
43.2 Reactive Power Capability of a Wind Turbine 979
43.2.1 P/Q Diagram 979
43.2.2 Reactive Power Dynamic 981
43.3 Model-Based Design of Voltage Control Systems for Wind
Power Plants 982
43.3.1 Large-Signal Simulation Model 982
43.3.2 Small-Signal Model 986
43.3.3 General Design Methodology 988
43.4 Performance Demonstration, Model Validation and Contingency Tests 988
43.5 Voltage Control of Medium-Voltage Network 989
43.5.1 Specifics of Voltage Control of Medium-Voltage Network
with Wind Power Plants 989
43.5.2 Voltage Control Systems Concept/Harmonization of
Mixed Discrete and Continuous Control 991
43.5.3 Automatic Voltage Regulators for Wind Power Plant/Stability
of Continuous Control 992
43.5.4 Low-Impact Operation Mode/Default of the Continuous
Control Schema 993
43.5.5 Efficiency of Re-Centre Control 995
43.5.6 Efficiency of Voltage Control Systems 996
43.5.7 Conclusion 996
Reference 997
44 Hydrogen as a Means of Transporting and Balancing
Wind Power Production 999
Robert Steinberger-Wilckens
AAA Introduction 999
44.2 A Brief Introduction to Hydrogen 1000
44.3 Technology and Efficiency 1001
44.3.1 Hydrogen Production by Electrolysis 1001
44.3.2 Hydrogen Storage 1002
44.3.3 Hydrogen Transport 1003
44.4 Reconversion to Electricity: Fuel Cells 1004
44.5 The Potential of Hydrogen in Wind Energy Storage 1006
44.6 Hydrogen Applications for Wind Energy Storage 1008
44.6.1 Hydrogen as Interim Storage for Surplus Energy 1008
Contents
44.6.2 Hydrogen Applications for Grid Control 1009
44.6.3 Converting Wind Energy into Chemical Products and Fuels 1011
44.7 A Blueprint for a Hydrogen Distribution System 1012
44.7.1 Initial Cost Estimates 1013
44.7.2 Examples of Demonstration Projects 1015
44.8 Conclusions 1016
Acknowledgments 1016
References 1017
Index 1019
|
any_adam_object | 1 |
author2 | Ackermann, Thomas 1966- |
author2_role | edt |
author2_variant | t a ta |
author_GND | (DE-588)1020387920 |
author_facet | Ackermann, Thomas 1966- |
building | Verbundindex |
bvnumber | BV040126112 |
callnumber-first | T - Technology |
callnumber-label | TK1541 |
callnumber-raw | TK1541 |
callnumber-search | TK1541 |
callnumber-sort | TK 41541 |
callnumber-subject | TK - Electrical and Nuclear Engineering |
classification_rvk | RB 10696 ZP 3710 |
classification_tum | ERG 730f |
ctrlnum | (OCoLC)794590486 (DE-599)BVBBV040126112 |
dewey-full | 621.31/2136 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 621 - Applied physics |
dewey-raw | 621.31/2136 |
dewey-search | 621.31/2136 |
dewey-sort | 3621.31 42136 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Energietechnik, Energiewirtschaft Elektrotechnik / Elektronik / Nachrichtentechnik Energietechnik Geographie |
edition | 2. ed. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02066nam a2200529zc 4500</leader><controlfield tag="001">BV040126112</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20131220 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">120509s2012 xxkabd| |||| 00||| eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">2011050039</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780470974162</subfield><subfield code="c">hardback</subfield><subfield code="9">978-0-470-97416-2</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)794590486</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV040126112</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxk</subfield><subfield code="c">GB</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-20</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-210</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1541</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">621.31/2136</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">RB 10696</subfield><subfield code="0">(DE-625)142220:12826</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZP 3710</subfield><subfield code="0">(DE-625)157969:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ERG 730f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Wind power in power systems</subfield><subfield code="c">ed. by Thomas Ackermann</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Chichester</subfield><subfield code="b">Wiley</subfield><subfield code="c">2012</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">LXIII, 1049 S.</subfield><subfield code="b">Ill., graph. Darst., Kt.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Wind power plants</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Wind power</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">TECHNOLOGY & ENGINEERING / Power Resources / General</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Elektrizitätsversorgungsnetz</subfield><subfield code="0">(DE-588)4121178-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Windkraftwerk</subfield><subfield code="0">(DE-588)4128839-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Windenergie</subfield><subfield code="0">(DE-588)4079329-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4143413-4</subfield><subfield code="a">Aufsatzsammlung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Windenergie</subfield><subfield code="0">(DE-588)4079329-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Elektrizitätsversorgungsnetz</subfield><subfield code="0">(DE-588)4121178-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Windkraftwerk</subfield><subfield code="0">(DE-588)4128839-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Elektrizitätsversorgungsnetz</subfield><subfield code="0">(DE-588)4121178-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ackermann, Thomas</subfield><subfield code="d">1966-</subfield><subfield code="0">(DE-588)1020387920</subfield><subfield code="4">edt</subfield></datafield><datafield tag="856" ind1="4" ind2=" "><subfield code="u">http://catalogimages.wiley.com/images/db/jimages/9780470974162.jpg</subfield><subfield code="3">Cover image</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=024983385&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-024983385</subfield></datafield></record></collection> |
genre | (DE-588)4143413-4 Aufsatzsammlung gnd-content |
genre_facet | Aufsatzsammlung |
id | DE-604.BV040126112 |
illustrated | Illustrated |
indexdate | 2024-07-10T00:17:29Z |
institution | BVB |
isbn | 9780470974162 |
language | English |
lccn | 2011050039 |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-024983385 |
oclc_num | 794590486 |
open_access_boolean | |
owner | DE-20 DE-83 DE-210 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-20 DE-83 DE-210 DE-91 DE-BY-TUM DE-634 |
physical | LXIII, 1049 S. Ill., graph. Darst., Kt. |
publishDate | 2012 |
publishDateSearch | 2012 |
publishDateSort | 2012 |
publisher | Wiley |
record_format | marc |
spelling | Wind power in power systems ed. by Thomas Ackermann 2. ed. Chichester Wiley 2012 LXIII, 1049 S. Ill., graph. Darst., Kt. txt rdacontent n rdamedia nc rdacarrier Wind power plants Wind power TECHNOLOGY & ENGINEERING / Power Resources / General bisacsh Elektrizitätsversorgungsnetz (DE-588)4121178-9 gnd rswk-swf Windkraftwerk (DE-588)4128839-7 gnd rswk-swf Windenergie (DE-588)4079329-1 gnd rswk-swf (DE-588)4143413-4 Aufsatzsammlung gnd-content Windenergie (DE-588)4079329-1 s Elektrizitätsversorgungsnetz (DE-588)4121178-9 s DE-604 Windkraftwerk (DE-588)4128839-7 s Ackermann, Thomas 1966- (DE-588)1020387920 edt http://catalogimages.wiley.com/images/db/jimages/9780470974162.jpg Cover image HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=024983385&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Wind power in power systems Wind power plants Wind power TECHNOLOGY & ENGINEERING / Power Resources / General bisacsh Elektrizitätsversorgungsnetz (DE-588)4121178-9 gnd Windkraftwerk (DE-588)4128839-7 gnd Windenergie (DE-588)4079329-1 gnd |
subject_GND | (DE-588)4121178-9 (DE-588)4128839-7 (DE-588)4079329-1 (DE-588)4143413-4 |
title | Wind power in power systems |
title_auth | Wind power in power systems |
title_exact_search | Wind power in power systems |
title_full | Wind power in power systems ed. by Thomas Ackermann |
title_fullStr | Wind power in power systems ed. by Thomas Ackermann |
title_full_unstemmed | Wind power in power systems ed. by Thomas Ackermann |
title_short | Wind power in power systems |
title_sort | wind power in power systems |
topic | Wind power plants Wind power TECHNOLOGY & ENGINEERING / Power Resources / General bisacsh Elektrizitätsversorgungsnetz (DE-588)4121178-9 gnd Windkraftwerk (DE-588)4128839-7 gnd Windenergie (DE-588)4079329-1 gnd |
topic_facet | Wind power plants Wind power TECHNOLOGY & ENGINEERING / Power Resources / General Elektrizitätsversorgungsnetz Windkraftwerk Windenergie Aufsatzsammlung |
url | http://catalogimages.wiley.com/images/db/jimages/9780470974162.jpg http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=024983385&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT ackermannthomas windpowerinpowersystems |