Mathematics for economists:
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
New York [u.a.]
Norton
1994
|
Ausgabe: | 1. ed., international student ed. |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | Hier auch später erschienene, unveränderte Nachdrucke |
Beschreibung: | XXIV, 930 S. graph. Darst. |
ISBN: | 9780393117523 0393957330 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV040114012 | ||
003 | DE-604 | ||
005 | 20131111 | ||
007 | t | ||
008 | 120502s1994 d||| |||| 00||| eng d | ||
020 | |a 9780393117523 |9 978-0-393-11752-3 | ||
020 | |a 0393957330 |9 0-393-95733-0 | ||
035 | |a (OCoLC)796212111 | ||
035 | |a (DE-599)OBVAC08212662 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-703 |a DE-473 |a DE-355 |a DE-N2 |a DE-92 |a DE-188 |a DE-2070s |a DE-19 | ||
084 | |a QH 100 |0 (DE-625)141530: |2 rvk | ||
100 | 1 | |a Simon, Carl P. |d 1945- |e Verfasser |0 (DE-588)170767981 |4 aut | |
245 | 1 | 0 | |a Mathematics for economists |c Carl P. Simon and Lawrence Blume |
250 | |a 1. ed., international student ed. | ||
264 | 1 | |a New York [u.a.] |b Norton |c 1994 | |
300 | |a XXIV, 930 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
500 | |a Hier auch später erschienene, unveränderte Nachdrucke | ||
650 | 0 | 7 | |a Wirtschaftsmathematik |0 (DE-588)4066472-7 |2 gnd |9 rswk-swf |
653 | |a Wirtschaftsmathematik | ||
655 | 7 | |8 1\p |0 (DE-588)4123623-3 |a Lehrbuch |2 gnd-content | |
689 | 0 | 0 | |a Wirtschaftsmathematik |0 (DE-588)4066472-7 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Blume, Lawrence E. |e Verfasser |0 (DE-588)170098389 |4 aut | |
856 | 4 | 2 | |m Digitalisierung UB Bamberg |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=024970271&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-024970271 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804149069976698880 |
---|---|
adam_text | Contents
Preface
xxi
part
ι
Introduction
1
Introduction
3
1.1
MATHEMATICS IN ECONOMIC THEORY
3
1.2
MODELS OF CONSUMER CHOICE
5
Two-Dimensional Model of Consumer Choice
5
Multidimensional Model of Consumer Choice
9
2
One-Variable Calculus: Foundations
10
2.1
FUNCTIONS ON R1
10
Vocabulary of Functions
10
Polynomials
11
Graphs
12
Increasing and Decreasing Functions
12
Domain
14
Interval Notation
15
2.2
LINEAR FUNCTIONS
16
The Slope of a Line in the Plane
16
The Equation of a Line
19
Polynomials of Degree One Have Linear Graphs
19
Interpreting the Slope of a Linear Function
20
2.3
THE SLOPE OF NONLINEAR FUNCTIONS
22
2.4
COMPUTING DERIVATIVES
25
Rules for Computing Derivatives
27
VI
CONTENTS
2.5
DIFFERENTIABILITY AND CONTINUITY
29
A Nondifferentiable Function
30
Continuous Functions
31
Continuously Differentiable Functions
32
2.6
HIGHER-ORDER DERIVATIVES
33
2.7
APPROXIMATION BY DIFFERENTIALS
34
3
One-Variable Calculus: Applications
39
3.1
USING THE FIRST DERIVATIVE FOR GRAPHING
39
Positive Derivative Implies Increasing Function
39
Using First Derivatives to Sketch Graphs
41
3.2
SECOND DERIVATIVES AND CONVEXITY
43
3.3
GRAPHING RATIONAL FUNCTIONS
47
Hints for Graphing
48
3.4
TAILS AND HORIZONTAL ASYMPTOTES
48
Tails of Polynomials
48
Horizontal Asymptotes of Rational Functions
49
3.5
MAXIMA AND MINIMA
51
Local Maxima and Minima on the Boundary and in
the Interior
51
Second Order Conditions
53
Global Maxima and Minima
55
Functions with Only One Critical Point
55
Functions with Nowhere-Zero Second Derivatives
56
Functions with No Global Max or
Min
56
Functions Whose Domains Are Closed Finite
Intervals
56
3.6
APPLICATIONS TO ECONOMICS
58
Production Functions
58
Cost Functions
59
Revenue and Profit Functions
62
Demand Functions and Elasticity
64
4
One-Variable Calculus: Chain Rule
70
4.1
COMPOSITE FUNCTIONS AND THE CHAIN RULE
70
Composite Functions
70
Differentiating Composite Functions: The Chain Rule
72
4.2
INVERSE FUNCTIONS AND THEIR DERIVATIVES
75
Definition and Examples of the Inverse of a Function
75
The Derivative of the Inverse Function
79
The Derivative of
.ť 7
80
CONTENTS
VII
Exponents and Logarithms
82
5.1
EXPONENTIAL FUNCTIONS
82
5.2
THE NUMBER
e
85
5.3
LOGARITHMS
88
Base
10
Logarithms
88
Base
e
Logarithms
90
5.4
PROPERTIES OF
EXP
AND LOG
91
5.5
DERIVATIVES OF
EXP
AND LOG
93
5.6
APPLICATIONS
97
Present Value
97
Annuities
98
Optimal Holding Time
99
Logarithmic Derivative
100
part
m
Linear Algebra
6
Introduction to Linear Algebra
107
6.1
LINEAR SYSTEMS
107
6.2
EXAMPLES OF LINEAR MODELS
108
Example
1:
Tax Benefits of Charitable Contributions
108
Example
2:
Linear Models of Production
110
Example
3:
Markov Models of Employment
113
Example
4:
IS-LM Analysis
115
Example
5:
Investment and Arbitrage
117
7
Systems of Linear Equations
122
7.1
GAUSSIAN AND GAUSS-JORDAN ELIMINATION
122
Substitution
123
Elimination of Variables
125
72
ELEMENTARY ROW OPERATIONS
129
73
SYSTEMS WITH MANY OR NO SOLUTIONS
134
7.4
RANK —THE FUNDAMENTAL CRITERION
142
Application to Portfolio Theory
147
7.5
THE LINEAR IMPLICIT FUNCTION THEOREM
150
VU!
CONTENTS
8
Matrix Algebra
153
8.1
MATRIX ALGEBRA
153
Addition
153
Subtraction
154
Scalar Multiplication
155
Matrix Multiplication
155
Laws of Matrix Algebra
156
Transpose
157
Systems of Equations in Matrix Form
158
8.2
SPECIAL KINDS OF MATRICES
160
8.3
ELEMENTARY MATRICES
162
8.4
ALGEBRA OF SQUARE MATRICES
165
8.5
INPUT-OUTPUT MATRICES
174
Proof of Theorem
8.13 178
8.6
PARTITIONED MATRICES (optional)
180
8.7
DECOMPOSING MATRICES (optional)
183
Mathematical Induction
185
Including Row Interchanges
185
9
Determinants: An Overview
188
9.1
THE DETERMINANT OF A MATRIX
189
Defining the Determinant
189
Computing the Determinant
191
Main Property of the Determinant
192
9.2
USES OF THE DETERMINANT
194
9.3
IS-LM ANALYSIS VIA CRAMER S RULE
197
10
Euclidean Spaces
199
10.1
POINTS AND VECTORS IN EUCLIDEAN SPACE
199
The Real Line
199
The Plane
199
Three Dimensions and More
201
10.2
VECTORS
202
10.3
THE ALGEBRA OF VECTORS
205
Addition and Subtraction
205
Scalar Multiplication
207
10.4
LENGTH AND INNER PRODUCT IN Rn
209
Length and Distance
209
The Inner Product
213
CONTENTS
IX
10.5
LINES
222
10.6
PLANES
226
Parametric
Equations
226
Nonparametric Equations
228
Hyperplanes 230
10.7
ECONOMIC
APPLICATIONS
232
Budget
Sets in Commodity Space
232
Input Space
233
Probability Simplex
233
The Investment Model
234
IS-LM Analysis
234
11
Linear Independence
237
11.1
LINEAR INDEPENDENCE
237
Definition
238
Checking Linear Independence
241
11.2
SPANNING SETS
244
11.3
BASIS AND DIMENSION IN R
247
Dimension
249
11.4
EPILOGUE
249
part
їм
Calculus of Several Variables
1 2
Limits and Open Sets
253
12.1
SEQUENCES OF REAL NUMBERS
253
Definition
253
Limit of a Sequence
254
Algebraic Properties of Limits
256
12.2
SEQUENCES IN Rm
260
12.3
OPEN SETS
264
Interior of a Set
267
12.4
CLOSED SETS
267
Closure of a Set
268
Boundary of a Set
269
12.5
COMPACT SETS
270
12.6
EPILOGUE
272
CONTENTS
13
Functions of Several Variables
273
13.1
FUNCTIONS BETWEEN EUCLIDEAN SPACES
273
Functions from Rn to
R
274
Functions from Rk to R™
275
13.2
GEOMETRIC REPRESENTATION OF FUNCTIONS
277
Graphs of Functions of Two Variables
277
Level Curves
280
Drawing Graphs from Level Sets
281
Planar Level Sets in Economics
282
Representing Functions from Rk to R1 for
k
> 2 283
Images of Functions from R1 to Rm
285
13.3
SPECIAL KINDS OF FUNCTIONS
287
Linear Functions on Rk
287
Quadratic Forms
289
Matrix Representation of Quadratic Forms
290
Polynomials
291
13.4
CONTINUOUS FUNCTIONS
293
13.5
VOCABULARY OF FUNCTIONS
295
Onto Functions and One-to-One Functions
297
Inverse Functions
297
Composition of Functions
298
14
Calculus of Several Variables
300
14.1
DEFINITIONS AND EXAMPLES
300
14.2
ECONOMIC INTERPRETATION
302
Marginal Products
302
Elasticity
304
14.3
GEOMETRIC INTERPRETATION
305
14.4
THE TOTAL DERIVATIVE
307
Geometric Interpretation
308
Linear Approximation
310
Functions of More than Two Variables
311
14.5
THE CHAIN RULE
313
Curves
313
Tangent Vector to a Curve
314
Differentiating along a Curve: The Chain Rule
316
14.6
DIRECTIONAL DERIVATIVES AND GRADIENTS
319
Directional Derivatives
319
The Gradient Vector
320
CONTENTS
XI
14.7
EXPLICIT
FUNCTIONS FROM
Rn
TO Rm
323
Approximation by Differentials
324
The Chain Rule
326
14.8
HIGHER-ORDER DERIVATIVES
328
Continuously Differentiable Functions
328
Second Order Derivatives and Hessians
329
Young s Theorem
330
Higher-Order Derivatives
331
An Economic Application
331
14.9
Epilogue
333
1 5
Implicit Functions and Their Derivatives
334
15.1
IMPLICIT FUNCTIONS
334
Examples
334
The Implicit Function Theorem for R2
337
Several Exogenous Variables in an Implicit
Function
341
1 5.2
LEVEL CURVES AND THEIR TANGENTS
342
Geometric Interpretation of the Implicit Function
Theorem
342
Proof Sketch
344
Relationship to the Gradient
345
Tangent to the Level Set Using Differentials
347
Level Sets of Functions of Several Variables
348
15.3
SYSTEMS OF IMPLICIT FUNCTIONS
350
Linear Systems
351
Nonlinear Systems
353
15.4
APPLICATION: COMPARATIVE STATICS
360
15.5
THE INVERSE FUNCTION THEOREM
(opţionali
364
15.6
APPLICATION: SIMPSON S PARADOX
368
part
iv
Optimization
1 6
Quadratic Forms and Definite Matrices
375
16.1
QUADRATIC FORMS
375
16.2
DEFINITENESS OF QUADRATIC FORMS
376
Definite Symmetric Matrices
379
XII CONTENTS
Application: Second Order Conditions and
Convexity
379
Application: Conic Sections
380
Principal Minors of a Matrix
381
The Definiteness of Diagonal Matrices
383
The Definiteness of
2
X
2
Matrices
384
16.3
LINEAR CONSTRAINTS AND BORDERED
MATRICES
386
Definiteness and Optimality
386
One Constraint
390
Other Approaches
391
16.4
APPENDIX
393
1 7
Unconstrained Optimization
396
17.1
DEFINITIONS
396
17.2
FIRST ORDER CONDITIONS
397
17.3
SECOND ORDER CONDITIONS
398
Sufficient Conditions
398
Necessary Conditions
401
17.4
GLOBAL MAXIMA AND MINIMA
402
Global Maxima of Concave Functions
403
17.5
ECONOMIC APPLICATIONS
404
Profit-Maximizing Firm
405
Discriminating Monopolist
405
Least Squares Analysis
407
18
Constrained Optimization I: First Order Conditions
411
18.1
EXAMPLES
412
18.2
EQUALITY CONSTRAINTS
413
Two Variables and One Equality Constraint
413
Several Equality Constraints
420
18.3
INEQUALITY CONSTRAINTS
424
One Inequality Constraint
424
Several Inequality Constraints
430
18.4
MIXED CONSTRAINTS
434
18.5
CONSTRAINED MINIMIZATION PROBLEMS
436
18.6
KUHN-TUCKER FORMULATION
439
CONTENTS XIII
18.7
EXAMPLES AND
APPLICATIONS 442
Application: A Sales-Maximizing Firm with
Advertising
442
Application: The Averch-Johnson Effect
443
One More Worked Example
445
19
Constrained Optimization II
448
19.1
THE MEANING OF THE MULTIPLIER
448
One Equality Constraint
449
Several Equality Constraints
450
Inequality Constraints
451
Interpreting the Multiplier
452
19.2
ENVELOPE THEOREMS
453
Unconstrained Problems
453
Constrained Problems
455
19.3
SECOND ORDER CONDITIONS
457
Constrained Maximization Problems
459
Minimization Problems
463
Inequality Constraints
466
Alternative Approaches to the Bordered Hessian
Condition
467
Necessary Second Order Conditions
468
19.4
SMOOTH DEPENDENCE ON THE PARAMETERS
469
19.5
CONSTRAINT QUALIFICATIONS
472
19.6
PROOFS OF FIRST ORDER CONDITIONS
478
Proof of Theorems
18.1
and
18.2:
Equality Constraints
478
Proof of Theorems
18.3
and
18.4:
Inequality
Constraints
480
20
Homogeneous and Homothetic Functions
483
20.1
HOMOGENEOUS FUNCTIONS
483
Definition and Examples
483
Homogeneous Functions in Economics
485
Properties of Homogeneous Functions
487
A Calculus Criterion for Homogeneity
491
Economic Applications of Euler s Theorem
492
20.2
HOMOGENIZING A FUNCTION
493
Economic Applications of Homogenization
495
20.3
CARDINAL VERSUS ORDINAL UTILITY
496
XIV CONTENTS
20.4
HOMOTHETIC FUNCTIONS
500
Motivation and Definition
500
Characterizing Homothetic Functions
501
21
Concave and Quasiconcave Functions
505
21.1
CONCAVE AND CONVEX FUNCTIONS
505
Calculus Criteria for Concavity
509
21.2
PROPERTIES OF CONCAVE FUNCTIONS
51 7
Concave Functions in Economics
521
21.3
QUASICONCAVE AND QUASICONVEX
FUNCTIONS
522
Calculus Criteria
525
21.4
PSEUDOCONCAVE
FUNCTIONS
527
21.5
CONCAVE PROGRAMMING
532
Unconstrained Problems
532
Constrained Problems
532
Saddle Point Approach
534
21.6
APPENDIX
537
Proof of the Sufficiency Test of Theorem
21.14 537
Proof of Theorem
21.15 538
Proof of Theorem
21.17 540
Proof of Theorem
21.20 541
22
Economic Applications
544
22.1 UTILITY
AND DEMAND
544
Utility Maximization
544
The Demand Function
547
The Indirect Utility Function
551
The Expenditure and Compensated Demand
Functions
552
The Slutsky Equation
555
22.2
ECONOMIC APPLICATION: PROFIT AND COST
557
The Profit-Maximizing Firm
557
The Cost Function
560
22.3
PARETO OPTIMA
565
Necessary Conditions for a Pareto Optimum
566
Sufficient Conditions for a Pareto Optimum
567
22.4
THE FUNDAMENTAL WELFARE THEOREMS
569
Competitive Equilibrium
572
Fundamental Theorems of Welfare Economics
573
CONTENTS
XV
part v Eigenvalues and Dynamics
23
Eigenvalues and Eigenvectors
579
23.1
DEFINITIONS AND EXAMPLES
579
23.2
SOLVING LINEAR DIFFERENCE EQUATIONS
585
One-Dimensional Equations
585
Two-Dimensional Systems: An Example
586
Conic Sections
587
The Leslie Population Model
588
Abstract Two-Dimensional Systems
590
k-Dimensional Systems
591
An Alternative Approach: The Powers of a Matrix
594
Stability of Equilibria
596
23.3
PROPERTIES OF EIGENVALUES
597
Trace as Sum of the Eigenvalues
599
23.4
REPEATED EIGENVALUES
601
2x2
Nondiagonalizable Matrices
601
3x3
Nondiagonalizable Matrices
604
Solving Nondiagonalizable Difference Equations
606
23.5
COMPLEX EIGENVALUES AND EIGENVECTORS
609
Diagonalizing Matrices with Complex Eigenvalues
609
Linear Difference Equations with Complex
Eigenvalues
611
Higher Dimensions
614
23.6
MARKOV PROCESSES
615
23.7
SYMMETRIC MATRICES
620
23.8
DEFINITENESS OF QUADRATIC FORMS
626
23.9
APPENDIX
629
Proof of Theorem
23.5 629
Proof of Theorem
23.9 630
24
Ordinary Differential Equations: Scalar Equations
633
24.1
DEFINITION AND EXAMPLES
633
24.2
EXPLICIT SOLUTIONS
639
Linear First Order Equations
639
Separable Equations
641
24.3
LINEAR SECOND ORDER EQUATIONS
647
Introduction
647
XVI CONTENTS
Real and Unequal Roots of the Characteristic
Equation
648
Real and Equal Roots of the Characteristic Equation
650
Complex Roots of the Characteristic Equation
651
The Motion of a Spring
653
Nonhomogeneous Second Order Equations
654
24.4
EXISTENCE OF SOLUTIONS
657
The Fundamental Existence and Uniqueness
Theorem
657
Direction Fields
659
24.5
PHASE PORTRAITS AND EQUILIBRIA ON R1
666
Drawing Phase Portraits
666
Stability of Equilibria on the Line
668
24.6
APPENDIX: APPLICATIONS
670
Indirect Money Metric Utility Functions
671
Converse of Euler s Theorem
672
25
Ordinary Differential Equations: Systems of
Equations
674
25.1
PLANAR SYSTEMS: AN INTRODUCTION
674
Coupled Systems of Differential Equations
674
Vocabulary
676
Existence and Uniqueness
677
25.2
LINEAR SYSTEMS VIA EIGENVALUES
678
Distinct Real Eigenvalues
678
Complex Eigenvalues
680
Multiple Real Eigenvalues
681
25.3
SOLVING LINEAR SYSTEMS BY SUBSTITUTION
682
25.4
STEADY STATES AND THEIR STABILITY
684
Stability of Linear Systems via Eigenvalues
686
Stability of Nonlinear Systems
687
25.5
PHASE PORTRAITS OF PLANAR SYSTEMS
689
Vector Fields
689
Phase Portraits: Linear Systems
692
Phase Portraits: Nonlinear Systems
694
25.6
FIRST INTEGRALS
703
The Predator-Prey System
705
Conservative Mechanical Systems
707
25.7
LIAPUNOV FUNCTIONS
7П
25.8
APPENDIX: LINEARIZATION
715
CONTENTS XVII
part
vi
Advanced Linear Algebra
26
Determinants: The Details
719
26.1
DEFINITIONS OF THE DETERMINANT
719
26.2
PROPERTIES OF THE DETERMINANT
726
26.3
USING DETERMINANTS
735
The Adjoint Matrix
736
26.4
ECONOMIC APPLICATIONS
739
Supply and Demand
739
26.5
APPENDIX
743
Proof of Theorem
26.1 743
Proof of Theorem
26.9 746
Other Approaches to the Determinant
747
2 7
Subspaces Attached to a Matrix
750
27.1
VECTOR SPACES AND SUBSPACES
750
R as a Vector Space
750
Subspaces of R
751
27.2
BASIS AND DIMENSION OF A PROPER
SUBSPACE 755
27.3
ROW SPACE
757
27.4
COLUMN SPACE
760
Dimension of the Column Space of A
760
The Role of the Column Space
763
27.5 NULLSPACE 765
Affine
Subspaces
765
Fundamental Theorem of Linear Algebra
767
Conclusion
770
27.6
ABSTRACT VECTOR SPACES
771
27.7
APPENDIX
774
Proof of Theorem
27.5 774
Proof of Theorem
27.10 775
28
Applications of Linear Independence
779
28.1
GEOMETRY OF SYSTEMS OF EQUATIONS
779
Two Equations in Two Unknowns
779
Two Equations in Three Unknowns
780
Three Equations in Three Unknowns
782
XVIII
CONTEXTS
28.2
PORTFOLIO ANALYSIS
783
28.3
VOTING PARADOXES
784
Three Alternatives
785
Four Alternatives
788
Consequences of the Existence of Cycles
789
Other Voting Paradoxes
790
Rankings of the Quality of Firms
790
28.4
ACTIVITY ANALYSIS: FEASIBILITY
791
Activity Analysis
791
Simple Linear Models and Productive Matrices
793
28.5
ACTIVITY ANALYSIS: EFFICIENCY
796
Leontief
Models
796
part
vii
Advanced Analysis
29
Limits and Compact Sets
803
29.1
CAUCHY SEQUENCES
803
29.2
COMPACT SETS
807
29.3
CONNECTED SETS
809
29.4
ALTERNATIVE NORMS
811
Three Norms on R
811
Equivalent Norms
813
Norms on Function Spaces
815
29.5
APPENDIX
816
Finite Covering Property
816
Heine-Borel Theorem
817
Summary
820
30
Calculus of Several Variables II
822
30.1
WEIERSTRASS S AND MEAN VALUE THEOREMS
822
Existence of Global Maxima on Compact Sets
822
Rolle s Theorem and the Mean Value Theorem
824
30.2
TAYLOR POLYNOMIALS ON R1
827
Functions of One Variable
827
30.3
TAYLOR POLYNOMIALS IN Rn
832
30.4
SECOND ORDER OPTIMIZATION CONDITIONS
836
Second Order Sufficient Conditions for
Optimization
836
Indefinite Hessian
839
CONTENTS
XIX
Second
Order Necessary Conditions for
Optimization
840
30.5
CONSTRAINED OPTIMIZATION
841
part
viii
Appendices
A1 Sets, Numbers, and Proofs
847
A1.1 SETS
847
Vocabulary of Sets
847
Operations with Sets
847
Al
.2
NUMBERS
848
Vocabulary
848
Properties of Addition and Multiplication
849
Least Upper Bound Property
850
A1.3 PROOFS
851
Direct Proofs
851
Converse and
Contrapositive
853
Indirect Proofs
854
Mathematical Induction
855
A2 Trigonometric Functions
859
A2.1 DEFINITIONS OF THE TRIG FUNCTIONS
859
A2.2 GRAPHING TRIG FUNCTIONS
863
A2.3 THE PYTHAGOREAN THEOREM
865
A2.4 EVALUATING TRIGONOMETRIC FUNCTIONS
866
A2.5 MULTIANGLE FORMULAS
868
A2.6 FUNCTIONS OF REAL NUMBERS
868
A2.7 CALCULUS WITH TRIG FUNCTIONS
870
A2.8 TAYLOR SERIES
872
A2.9 PROOF OF THEOREM A2.3
873
A3
Complex Numbers
876
A3.1 BACKGROUND
876
Definitions
877
Arithmetic Operations
877
A3.2 SOLUTIONS OF POLYNOMIAL EQUATIONS
878
XX
CONTENTS
АЗ.З
GEOMETRIC REPRESENTATION
879
A3.4 COMPLEX NUMBERS AS EXPONENTS
882
A3.5 DIFFERENCE EQUATIONS
884
A4
Integral Calculus
887
A4.1
ANTIDERIVATIVES 887
Integration by Parts
888
A4.2 THE FUNDAMENTAL THEOREM OF CALCULUS
889
A4.3 APPLICATIONS
890
Area under a Graph
890
Consumer Surplus
891
Present Value of a Flow
892
A5 Introduction to Probability
894
A5.1 PROBABILITY OF AN EVENT
894
A5.2 EXPECTATION AND VARIANCE
895
A5.3 CONTINUOUS RANDOM VARIABLES
896
A6 Selected Answers
899
Index
921
|
any_adam_object | 1 |
author | Simon, Carl P. 1945- Blume, Lawrence E. |
author_GND | (DE-588)170767981 (DE-588)170098389 |
author_facet | Simon, Carl P. 1945- Blume, Lawrence E. |
author_role | aut aut |
author_sort | Simon, Carl P. 1945- |
author_variant | c p s cp cps l e b le leb |
building | Verbundindex |
bvnumber | BV040114012 |
classification_rvk | QH 100 |
ctrlnum | (OCoLC)796212111 (DE-599)OBVAC08212662 |
discipline | Wirtschaftswissenschaften |
edition | 1. ed., international student ed. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01675nam a2200397 c 4500</leader><controlfield tag="001">BV040114012</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20131111 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">120502s1994 d||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780393117523</subfield><subfield code="9">978-0-393-11752-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0393957330</subfield><subfield code="9">0-393-95733-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)796212111</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)OBVAC08212662</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-473</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-N2</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-2070s</subfield><subfield code="a">DE-19</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QH 100</subfield><subfield code="0">(DE-625)141530:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Simon, Carl P.</subfield><subfield code="d">1945-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)170767981</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Mathematics for economists</subfield><subfield code="c">Carl P. Simon and Lawrence Blume</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1. ed., international student ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York [u.a.]</subfield><subfield code="b">Norton</subfield><subfield code="c">1994</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXIV, 930 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Hier auch später erschienene, unveränderte Nachdrucke</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Wirtschaftsmathematik</subfield><subfield code="0">(DE-588)4066472-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Wirtschaftsmathematik</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)4123623-3</subfield><subfield code="a">Lehrbuch</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Wirtschaftsmathematik</subfield><subfield code="0">(DE-588)4066472-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Blume, Lawrence E.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)170098389</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bamberg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=024970271&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-024970271</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
genre | 1\p (DE-588)4123623-3 Lehrbuch gnd-content |
genre_facet | Lehrbuch |
id | DE-604.BV040114012 |
illustrated | Illustrated |
indexdate | 2024-07-10T00:17:10Z |
institution | BVB |
isbn | 9780393117523 0393957330 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-024970271 |
oclc_num | 796212111 |
open_access_boolean | |
owner | DE-703 DE-473 DE-BY-UBG DE-355 DE-BY-UBR DE-N2 DE-92 DE-188 DE-2070s DE-19 DE-BY-UBM |
owner_facet | DE-703 DE-473 DE-BY-UBG DE-355 DE-BY-UBR DE-N2 DE-92 DE-188 DE-2070s DE-19 DE-BY-UBM |
physical | XXIV, 930 S. graph. Darst. |
publishDate | 1994 |
publishDateSearch | 1994 |
publishDateSort | 1994 |
publisher | Norton |
record_format | marc |
spelling | Simon, Carl P. 1945- Verfasser (DE-588)170767981 aut Mathematics for economists Carl P. Simon and Lawrence Blume 1. ed., international student ed. New York [u.a.] Norton 1994 XXIV, 930 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Hier auch später erschienene, unveränderte Nachdrucke Wirtschaftsmathematik (DE-588)4066472-7 gnd rswk-swf Wirtschaftsmathematik 1\p (DE-588)4123623-3 Lehrbuch gnd-content Wirtschaftsmathematik (DE-588)4066472-7 s DE-604 Blume, Lawrence E. Verfasser (DE-588)170098389 aut Digitalisierung UB Bamberg application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=024970271&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Simon, Carl P. 1945- Blume, Lawrence E. Mathematics for economists Wirtschaftsmathematik (DE-588)4066472-7 gnd |
subject_GND | (DE-588)4066472-7 (DE-588)4123623-3 |
title | Mathematics for economists |
title_auth | Mathematics for economists |
title_exact_search | Mathematics for economists |
title_full | Mathematics for economists Carl P. Simon and Lawrence Blume |
title_fullStr | Mathematics for economists Carl P. Simon and Lawrence Blume |
title_full_unstemmed | Mathematics for economists Carl P. Simon and Lawrence Blume |
title_short | Mathematics for economists |
title_sort | mathematics for economists |
topic | Wirtschaftsmathematik (DE-588)4066472-7 gnd |
topic_facet | Wirtschaftsmathematik Lehrbuch |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=024970271&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT simoncarlp mathematicsforeconomists AT blumelawrencee mathematicsforeconomists |