Aerodynamics for engineering students:
Gespeichert in:
Format: | Buch |
---|---|
Sprache: | English |
Veröffentlicht: |
Amsterdam [u.a.]
Elsevier
2013
|
Ausgabe: | 6. ed. |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | Literaturverz. S. 707 - 713 |
Beschreibung: | XVI, 724 S. Ill., graph. Darst. |
ISBN: | 9780080966328 0080966322 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV040112439 | ||
003 | DE-604 | ||
005 | 20170619 | ||
007 | t | ||
008 | 120420s2013 ad|| |||| 00||| eng d | ||
015 | |a GBB217124 |2 dnb | ||
020 | |a 9780080966328 |9 978-0-08-096632-8 | ||
020 | |a 0080966322 |9 0-08-096632-2 | ||
035 | |a (OCoLC)815882604 | ||
035 | |a (DE-599)BVBBV040112439 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-634 |a DE-83 |a DE-29T |a DE-573 |a DE-898 | ||
084 | |a ZO 7230 |0 (DE-625)157840: |2 rvk | ||
245 | 1 | 0 | |a Aerodynamics for engineering students |c E. L. Houghton ... |
250 | |a 6. ed. | ||
264 | 1 | |a Amsterdam [u.a.] |b Elsevier |c 2013 | |
300 | |a XVI, 724 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
500 | |a Literaturverz. S. 707 - 713 | ||
650 | 4 | |a Aerodynamics | |
650 | 0 | 7 | |a Aerodynamik |0 (DE-588)4000589-6 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4123623-3 |a Lehrbuch |2 gnd-content | |
689 | 0 | 0 | |a Aerodynamik |0 (DE-588)4000589-6 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Houghton, Edward L. |e Sonstige |4 oth | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=024968738&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-024968738 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804149067706531840 |
---|---|
adam_text | Titel: Aerodynamics for engineering students
Autor: Houghton, Edward L
Jahr: 2013
Contents
Preface............................................................................... xv
CHAPTER 1 Basic Concepts and Definitions.................................. 1
1.1 Introduction....................................................... 1
1.1.1 Basic Concepts............................................. 2
1.1.2 Measures of Dynamical Properties........................ 4
1.2 Units and Dimensions............................................ 5
1.2.1 Fundamental Dimensions and Units...................... 6
1.2.2 Fractions and Multiples.................................... 7
1.2.3 Units of Other Physical Quantities........................ 7
1.2.4 Imperial Units.............................................. 9
1.3 Relevant Properties............................................... 12
1.3.1 Forms of Matter............................................ 12
1.3.2 Huids....................................................... 13
1.3.3 Pressure..................................................... 14
1.3.4 Temperature................................................ 16
1.3.5 Density..................................................... 16
1.3.6 Viscosity.................................................... 17
1.3.7 Speed of Sound and Bulk Elasticity....................... 19
1.3.8 Thermodynamic Properties................................ 20
1.4 Aeronautical Definitions ......................................... 25
1.4.1 Airfoil Geometry........................................... 25
1.4.2 WingGeometry............................................ 27
1.5 Dimensional Analysis............................................ 29
1.5.1 Fundamental Principles.................................... 29
1.5.2 Dimensional Analysis Applied to Aerodynamic Force .. 32
1.6 Basic Aerodynamics.............................................. 38
1.6.1 Aerodynamic Force and Moment......................... 38
. 1.6.2 Force and Moment Coefficients........................... 40
1.6.3 Pressure Distribution on an Airfoil........................ 41
1.6.4 Pitching Moment........................................... 43
1.6.5 TypesofDrag.............................................. 47
1.6.6 Estimation of Lift, Drag, and Pitching Moment
Coefficients from the Pressure Distribution.............. 51
1.6.7 Induced Drag............................................... 55
1.6.8 Lift-Dependent Drag....................................... 58
1.6.9 Airfoil Characteristics..................................... 58
1.7 Exercises.......................................................... 65
CHAPTER 2 Fundamental Equations of Fluid Mechanics.................... 69
2.1 Introduction....................................................... 69
2.1.1 Selection of Coordinates................................... 70
2.1.2 A Comparison of Steady and Unsteady How ............ 71
2.2 One-Dimensional How: The Basic Equations.................. 73
2.2.1 One-Dimensional How: The Basic Equations of
Conservation............................................... 73
2.2.2 Comments on the Momentum and Energy Equations.... 80
2.3 Measurement of Air Speed....................................... 81
2.3.1 Pit6t-Static Tube........................................... 81
2.3.2 Pressure Coefficient........................................ 82
2.3.3 Air-Speed Indicator: Indicated and Equivalent
Air Speeds ................................................. 83
2.3.4 Incompressibility Assumption............................. 84
2.4 Two-Dimensional How .......................................... 87
2.4.1 Component Velocities ..................................... 88
2.4.2 Equation of Continuity or Conservation of Mass ........ 91
2.4.3 Equation of Continuity in Polar Coordinates............. 93
2.5 Stream Function and Streamline................................. 94
2.5.1 Stream Function if......................................... 94
2.5.2 Streamline.................................................. 96
2.5.3 Velocity Components in Terms of ty...................... 97
2.6 Momentum Equation............................................. 100
2.6.1 Euler Equations............................................ 105
2.7 Rates of Strain, Rotational How, and Vorticity.................. 105
2.7.1 Distortion of Huid Element in How Field................ 106
2.7.2 Rate of Shear Strain........................................ 107
2.7.3 Rate of Direct Strain....................................... 108
2.7.4 Vorticity.................................................... 109
2.7.5 Vorticity in Polar Coordinates............................. 109
2.7.6 Rotational and Irrotational How.......................... 110
2.7.7 Circulation.................................................. 110
2.8 Navier-Stokes Equations......................................... 113
2.8.1 Relationship between Rates of Strain and Viscous
Stresses..................................................... 113
2.8.2 Derivation of the Navier-Stokes Equations............... 115
2.9 Properties of the Navier-Stokes Equations...................... 117
2.10 Exact Solutions of the Navier-Stokes Equations................ 121
2.10.1 Couette How: Simple Shear How....................... 122
2.10.2 Plane Poiseuille Flow: Pressure-Driven Channel How. 122
2.10.3 Hiemenz How: Two-Dimensional Stagnation-Point
How ...................................................... 124
2.11 Prandtl s Boundary-Layer Equations............................ 128
2.11.1 Development of the Boundary Layer.................... 130
2.11.2 Boundary-Layer Thickness.............................. 132
2.11.3 Nondimensional Profile.................................. 132
2.11.4 Laminar and Turbulent Hows ........................... 133
2.11.5 Growth along a Hat Surface............................. 134
2.11.6 Effects of an External Pressure Gradient................ 136
2.12 Boundary-Layer Equations....................................... 137
2.12.1 Derivation of the Laminar Boundary-Layer Equations. 138
2.12.2 Boundary-Layer Thickness for Laminar and
Turbulent Hows.......................................... 143
2.12.3 Boundary-Layer/Potential-How Model of Airfoils
and Wings................................................ 144
2.13 Exercises.......................................................... 144
CHAPTER 3 Potential Flow..................................................... 149
3.1 Two-Dimensional Hows......................................... 149
3.1.1 The Velocity Potential..................................... 153
3.1.2 The Equipotential.......................................... 155
3.1.3 Velocity Components in Terms of t ...................... 156
3.2 Standard Hows in Terms of x/r and / ............................ 157
3.2.1 Uniform How.............................................. 158
3.2.2 Two-Dimensional How from a Source (or towards
a Sink)...................................................... 160
3.2.3 Doublet Located at (jc,v) = (0,0).......................... 162
3.2.4 Line (Point) Vortex......................................... 163
3.2.5 Solid Boundaries and Image Systems..................... 165
3.2.6 Rankine Leading Edge..................................... 168
3.2.7 RankineOval............................................... 171
3.2.8 Circular Cylinder with Circulation in a Cross How...... 175
3.2.9 Joukowski Airfoil and the Circular Cylinder............. 182
3.3 Axisymmetric Hows (Inviscid and Incompressible Hows).... 183
3.3.1 Cylindrical Coordinate System............................ 184
3.3.2 Spherical Coordinates..................................... 185
3.3.3 Axisymmetric How from a Point Source (or towards
aPointSink)............................................... 186
3.3.4 Point Source and Sink in a Uniform Axisymmetric
How........................................................ 187
3.3.5 The Point Doublet and the Potential How around
a Sphere.................................................... 189
3.3.6 How around Slender Bodies.............................. 192
3.4 Computational (Panel) Methods................................. 195
3.5 Exercises.......................................................... 203
CHAPTER4 Two-Dimensional Wing Theory..................................209
4.1 Introduction....................................................... 209
4.1.1 The Kutta Condition....................................... 211
4.1.2 Circulation and Vorticity................................... 213
4.1.3 Circulation and Lift (The Kutta-Joukowski
Theorem)................................................... 218
4.2 The Development of Airfoil Theory............................. 220
4.3 General Thin-Airfoil Theory..................................... 223
4.4 Solution to the General Equation................................ 228
4.4.1 Thin Symmetrical Hat-Plate Airfoil...................... 229
4.4.2 General Thin-Airfoil Section.............................. 231
4.5 The Happed Airfoil............................................... 235
4.5.1 Hinge Moment Coefficient................................ 237
4.6 The Jet Hap....................................................... 240
4.7 Normal Force and Pitching Moment Derivatives Due to
Pitching........................................................... 240
4.7.1 (Zq)(Mq) Wing Contributions............................. 241
4.8 Particular Camber Lines.......................................... 245
4.8.1 Cubic Camber Lines....................................... 245
4.8.2 NACA Four-Digit Wing Sections......................... 249
4.9 The Thickness Problem for Thin-Airfoil Theory ............... 251
4.9.1 Thickness Problem for Thin Airfoils...................... 252
4.10 Computational (Panel) Methods for Two-Dimensional
Lifting Hows..................................................... 256
4.11 Exercises.......................................................... 265
CHAPTER 5 Wing Theory.......................................................269
5.1 The Vortex System................................................ 270
5.1.1 Starting Vortex............................................. 270
5.1.2 Trailing Vortex System.................................... 271
5.1.3 Bound Vortex System...................................... 272
5.1.4 Horseshoe Vortex.......................................... 273
5.2 Laws of Vortex Motion........................................... 273
5.2.1 Helmholtz s Theorems..................................... 275
5.2.2 The Biot-Savart Law....................................... 276
5.2.3 Variation of Velocity in Vortex How...................... 279
5.3 The Wing as a Simplified Horseshoe Vortex.................... 281
5.3.1 Influence of Downwash on the Tailplane................. 285
5.3.2 Ground Effects............................................. 286
5.4 Vortex Sheets...................................................... 289
5.4.1 Use of Vortex Sheets to Model the Lifting Effects of
a Wing...................................................... 290
5.5 Relationship between Spanwise Loading and Trailing
Vorticity........................................................... 294
5.5.1 Induced Velocity (Downwash)............................ 296
5.5.2 The Consequences of Downwash?Trailing Vortex
Drag........................................................ 299
5.5.3 Characteristics of Simple Symmetric
Loading?Elliptic Distribution ........................... 302
5.5.4 General (Series) Distribution of Lift...................... 306
5.5.5 Aerodynamic Characteristics for Symmetrical General
Loading .................................................... 309
5.6 Determination of Load Distribution on a Given Wing.......... 315
5.6.1 General Theory for Wings of High Aspect Ratio......... 316
5.6.2 General Solution to Prandtl s Integral Equation.......... 318
5.6.3 Load Distribution for Minimum Drag.................... 323
5.7 Swept and Delta Wings........................................... 325
5.7.1 Yawed Wings of Infinite Span............................. 326
5.7.2 Swept Wings of Finite Span............................... 327
5.7.3 Wings of Small Aspect Ratio.............................. 330
5.8 Computational (Panel) Methods for Wings...................... 337
5.9 Exercises.......................................................... 342
CHAPTER 6 Compressible Flow................................................349
6.1 Introduction....................................................... 350
6.2 Isentropic One-Dimensional How............................... 352
6.2.1 Pressure, Density, and Temperature Ratios along
a Streamline in Isentropic How........................... 355
6.2.2 Ratio of Areas at Different Sections of the Stream
Tube in Isentropic How................................... 359
6.2.3 Velocity along an Isentropic Stream Tube................ 361
6.2.4 Variation of Mass How with Pressure.................... 363
6.3 One-Dimensional How: Weak Waves........................... 375
6.3.1 Speed of Sound (Acoustic Speed)......................... 376
6.4 One-Dimensional How: Plane Normal Shock Waves.......... 380
6.4.1 One-Dimensional Properties of Normal Shock Waves... 381
6.4.2 Pressure-Density Relations across the Shock............. 381
6.4.3 Static Pressure Jump across a Normal Shock............. 383
6.4.4 Density Jump across the Normal Shock.................. 384
6.4.5 Temperature Rise across the Normal Shock.............. 385
6.4.6 Entropy Change across the Normal Shock ............... 385
6.4.7 Mach Number Change across the Normal Shock........ 386
6.4.8 Velocity Change across the Normal Shock............... 386
6.4.9 Total Pressure Change across the Normal Shock......... 388
6.4.10 Pitdt Tube Equation........................................ 389
6.4.11 Converging-Diverging Nozzle Operations................ 391
6.5 Mach Waves and Shock Waves in Two-Dimensional How .... 395
6.6 Mach Waves...................................................... 396
6.6.1 Mach Wave Reflection..................................... 404
6.6.2 Mach Wave Interference................................... 407
6.7 ShockWaves...................................................... 407
6.7.1 Plane Oblique Shock Relations ........................... 407
6.7.2 Shock Polar................................................. 412
6.7.3 Two-Dimensional Supersonic How Past a Wedge....... 419
6.8 Exercises.......................................................... 422
CHAPTER 7 Airfoils and Wings in Compressible Flow.......................427
7.1 Wings in Compressible How..................................... 427
7.1.1 Transonic How: The Critical Mach Number............. 427
7.1.2 Subcritical How: The Small-Perturbation Theory
(Prandtl-Glauert Rule)..................................... 431
7.1.3 Supersonic Linearized Theory (Ackeret s Rule) ......... 446
7.1.4 Other Aspects of Supersonic Wings...................... 470
7.2 Exercises.......................................................... 476
CHAPTER 8 Viscous Row and Boundary Layers..............................479
8.1 Introduction....................................................... 479
8.2 Boundary-Layer Theory.......................................... 484
8.2.1 Blasius s Solution.......................................... 485
8.2.2 Definitions of Boundary-Layer Thickness................ 487
8.2.3 Skin-Friction Drag......................................... 491
8.2.4 Laminar Boundary-Layer Thickness along a Flat
Plate........................................................ 495
8.2.5 Solving the General Case.................................. 496
8.3 Boundary-Layer Separation...................................... 498
8.3.1 Separation Bubbles ........................................ 500
8.4 Flow Past Cylinders and Spheres................................ 501
8.4.1 Turbulence on Spheres..................................... 507
8.4.2 Golf Balls................................................... 509
8.4.3 Cricket Balls ............................................... 509
8.5 The Momentum-Integral Equation............................... 511
8.5.1 An Approximate Velocity Profile for the Laminar
Boundary Layer............................................ 515
8.6 Approximate Methods for a Boundary Layer on a Flat Plate
with Zero Pressure Gradient..................................... 519
8.6.1 Simplified Form of the Momentum-Integral
Equation.................................................... 519
8.6.2 Rate of Growth of a Laminar Boundary Layer on
aFlatPlate................................................. 520
8.6.3 Drag Coefficient for a Flat Plate of Streamwise Length
L with a Wholly Laminar Boundary Layer............... 520
8.6.4 Turbulent Velocity Profile................................. 521
8.6.5 Rate of Growth of a Turbulent Boundary Layer on
a Hat Plate................................................. 523
8.6.6 Drag Coefficient for a Hat Plate with a Wholly
Turbulent Boundary Layer................................ 527
8.6.7 Conditions at Transition................................... 528
8.6.8 Mixed Boundary-Layer How on a Hat Plate with Zero
Pressure Gradient.......................................... 529
8.7 Additional Examples of the Momentum-Integral Equation .... 534
8.8 Laminar-Turbulent Transition.................................... 538
8.9 The Physics of Turbulent Boundary Layers..................... 545
8.9.1 Reynolds Averaging and Turbulent Stress................ 545
8.9.2 Boundary-Layer Equations for Turbulent Hows......... 548
8.9.3 Eddy Viscosity............................................. 549
8.9.4 Prandtl s Mixing-Length Theory of Turbulence.......... 553
8.9.5 Regimes of Turbulent Wall How.......................... 554
8.9.6 Formulae for Local Skin-Friction Coefficient
and Drag................................................... 556
8.9.7 Distribution of Reynolds Stresses and Turbulent
Kinetic Energy across the Boundary Layer.............. 558
8.9.8 Turbulence Structures in the Near-Wall Region.......... 558
8.10 Computational Methods.......................................... 565
8.10.1 Methods Based on the Momentum-Integral Equation .. 565
8.10.2 Transition Prediction..................................... 569
8.10.3 Computational Solution for the Laminar
Boundary-Layer Equations.............................. 570
8.10.4 Computational Solution for Turbulent Boundary
Layers..................................................... 575
8.10.5 Zero-Equation Methods.................................. 576
8.10.6 k - e: A Typical Two-Equation Method................. 577
8.10.7 Large-Eddy Simulation .................................. 579
8.11 Estimation of Profile Drag from the Velocity Profile
in a Wake ......................................................... 581
8.11.1 Momentum-Integral Expression for the Drag of
a Two-Dimensional Body................................ 581
8.11.2 Jones s Wake Traverse Method for Determining
Profile Drag............................................... 582
8.11.3 Growth Rate of a Two-Dimensional Wake Using the
General Momentum-Integral Equation.................. 584
8.12 Some Boundary-Layer Effects in Supersonic Flow............. 587
8.12.1 Near-Normal Shock Interaction with the Laminar
Boundary Layer.......................................... 588
8.12.2 Near-Normal Shock Interaction with the Turbulent
Boundary Layer.......................................... 589
8.12.3 Shock-Wave/Boundary-Layer Interaction in
Supersonic Row ......................................... 590
8.13 Exercises.......................................................... 598
CHAPTER 9 Flow Control and Wing Design...................................601
9.1 Introduction....................................................... 601
9.2 Maximizing Lift for Single-Element Airfoils................... 602
9.3 Multi-Element Airfoils........................................... 608
9.3.1 The Slat Effect............................................. 611
9.3.2 The Flap Effect............................................. 612
9.3.3 Off-the-Surface Recovery................................. 612
9.3.4 Fresh Boundary-Layer Effect............................. 614
9.3.5 The Gurney Flap........................................... 615
9.3.6 Movable Flaps: Artificial Bird Feathers.................. 619
9.4 Boundary Layer Control Prevention to Separation ............. 621
9.4.1 Boundary-Layer Suction................................... 622
9.4.2 Control by Tangential Blowing............................ 623
9.4.3 Other Methods of Separation Control..................... 630
9.5 Reduction of Skin-Friction Drag................................. 631
9.5.1 Laminar Flow Control by Boundary-Layer Suction..... 631
9.5.2 Compliant Walls: Artificial Dolphin Skins............... 633
9.5.3 Riblets...................................................... 636
9.6 Reduction of Form Drag ......................................... 638
9.7 Reduction of Induced Drag....................................... 639
9.8 Reduction of Wave Drag......................................... 642
CHAPTER 10 Propulsion Devices............................................... 645
10.1 Froude s Momentum Theory of Propulsion..................... 645
10.2 Airscrew Coefficients............................................. 652
10.2.1 Thrust Coefficient........................................ 652
10.2.2 Torque Coefficient........................................ 654
10.2.3 Efficiency................................................. 654
10.2.4 Power Coefficient ........................................ 654
10.2.5 Activity Factor............................................ 655
10.3 Airscrew Pitch.................................................... 659
10.3.1 Geometric Pitch.......................................... 659
10.3.2 Effect of Geometric Pitch on Airscrew Performance... 660
10.3.3 Experimental Mean Pitch................................ 662
10.4 Blade-Element Theory ........................................... 662
10.4.1 Vortex System of an Airscrew........................... 662
10.4.2 Performance of a Blade Element........................ 664
10.5 The Momentum Theory Applied to the Helicopter Rotor...... 671
10.5.1 Actuator Disc in Hovering Flight........................ 671
10.5.2 Vertical Climbing Flight................................. 672
10.5.3 Slow, Powered Descending Flight....................... 673
10.5.4 Translational Helicopter Flight.......................... 673
10.6 The Rocket Motor................................................ 675
10.6.1 Free Motion of a Rocket-Propelled Body............... 677
10.7 The Hovercraft.................................................... 682
10.8 Exercises.......................................................... 685
Appendix A: Symbols and Notation................................................. 689
Appendix B........................................................................... 695
Appendix C: A Solution of Integrals of the Type of Glauert s Integral............701
Appendix D: Conversion of Imperial Units to Systeme
International (SI) Units...............................................705
Bibliography.........................................................................707
Index.................................................................................715
|
any_adam_object | 1 |
building | Verbundindex |
bvnumber | BV040112439 |
classification_rvk | ZO 7230 |
ctrlnum | (OCoLC)815882604 (DE-599)BVBBV040112439 |
discipline | Verkehr / Transport |
edition | 6. ed. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01505nam a2200397 c 4500</leader><controlfield tag="001">BV040112439</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20170619 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">120420s2013 ad|| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">GBB217124</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780080966328</subfield><subfield code="9">978-0-08-096632-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0080966322</subfield><subfield code="9">0-08-096632-2</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)815882604</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV040112439</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-634</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-573</subfield><subfield code="a">DE-898</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZO 7230</subfield><subfield code="0">(DE-625)157840:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Aerodynamics for engineering students</subfield><subfield code="c">E. L. Houghton ...</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">6. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Amsterdam [u.a.]</subfield><subfield code="b">Elsevier</subfield><subfield code="c">2013</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XVI, 724 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Literaturverz. S. 707 - 713</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Aerodynamics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Aerodynamik</subfield><subfield code="0">(DE-588)4000589-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4123623-3</subfield><subfield code="a">Lehrbuch</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Aerodynamik</subfield><subfield code="0">(DE-588)4000589-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Houghton, Edward L.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=024968738&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-024968738</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
genre | (DE-588)4123623-3 Lehrbuch gnd-content |
genre_facet | Lehrbuch |
id | DE-604.BV040112439 |
illustrated | Illustrated |
indexdate | 2024-07-10T00:17:08Z |
institution | BVB |
isbn | 9780080966328 0080966322 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-024968738 |
oclc_num | 815882604 |
open_access_boolean | |
owner | DE-634 DE-83 DE-29T DE-573 DE-898 DE-BY-UBR |
owner_facet | DE-634 DE-83 DE-29T DE-573 DE-898 DE-BY-UBR |
physical | XVI, 724 S. Ill., graph. Darst. |
publishDate | 2013 |
publishDateSearch | 2013 |
publishDateSort | 2013 |
publisher | Elsevier |
record_format | marc |
spelling | Aerodynamics for engineering students E. L. Houghton ... 6. ed. Amsterdam [u.a.] Elsevier 2013 XVI, 724 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Literaturverz. S. 707 - 713 Aerodynamics Aerodynamik (DE-588)4000589-6 gnd rswk-swf (DE-588)4123623-3 Lehrbuch gnd-content Aerodynamik (DE-588)4000589-6 s 1\p DE-604 Houghton, Edward L. Sonstige oth HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=024968738&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Aerodynamics for engineering students Aerodynamics Aerodynamik (DE-588)4000589-6 gnd |
subject_GND | (DE-588)4000589-6 (DE-588)4123623-3 |
title | Aerodynamics for engineering students |
title_auth | Aerodynamics for engineering students |
title_exact_search | Aerodynamics for engineering students |
title_full | Aerodynamics for engineering students E. L. Houghton ... |
title_fullStr | Aerodynamics for engineering students E. L. Houghton ... |
title_full_unstemmed | Aerodynamics for engineering students E. L. Houghton ... |
title_short | Aerodynamics for engineering students |
title_sort | aerodynamics for engineering students |
topic | Aerodynamics Aerodynamik (DE-588)4000589-6 gnd |
topic_facet | Aerodynamics Aerodynamik Lehrbuch |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=024968738&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT houghtonedwardl aerodynamicsforengineeringstudents |