Hilbert modular forms with coefficients in intersection homology and quadratic base change:
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Basel [u.a.]
Springer
2012
|
Schriftenreihe: | Progress in mathematics
298 |
Schlagworte: | |
Online-Zugang: | BTU01 TUM01 UBA01 UBM01 UBT01 UBW01 UER01 UPA01 Volltext |
Beschreibung: | 1 Online-Ressource |
ISBN: | 9783034803502 9783034803519 |
DOI: | 10.1007/978-3-0348-0351-9 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV040103332 | ||
003 | DE-604 | ||
005 | 20120613 | ||
007 | cr|uuu---uuuuu | ||
008 | 120417s2012 gw |||| o||u| ||||||eng d | ||
015 | |a 12,O04 |2 dnb | ||
016 | 7 | |a 102122197X |2 DE-101 | |
020 | |a 9783034803502 |9 978-3-0348-0350-2 | ||
020 | |a 9783034803519 |c Online |9 978-3-0348-0351-9 | ||
024 | 7 | |a 10.1007/978-3-0348-0351-9 |2 doi | |
024 | 3 | |a 9783034803519 | |
035 | |a (OCoLC)798968301 | ||
035 | |a (DE-599)DNB102122197X | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE-BE | ||
049 | |a DE-634 |a DE-20 |a DE-703 |a DE-19 |a DE-91 |a DE-29 |a DE-739 |a DE-384 |a DE-83 | ||
084 | |a 510 |2 sdnb | ||
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Getz, Jayce Robert |e Verfasser |0 (DE-588)1022361333 |4 aut | |
245 | 1 | 0 | |a Hilbert modular forms with coefficients in intersection homology and quadratic base change |c Jayce Getz ; Mark Goresky |
264 | 1 | |a Basel [u.a.] |b Springer |c 2012 | |
300 | |a 1 Online-Ressource | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Progress in mathematics |v 298 | |
650 | 0 | 7 | |a Hilbertsche Modulform |0 (DE-588)4159855-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Homologietheorie |0 (DE-588)4141714-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Hilbertsche Modulfläche |0 (DE-588)4159854-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Schnitttheorie |0 (DE-588)4179890-9 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Hilbertsche Modulform |0 (DE-588)4159855-6 |D s |
689 | 0 | 1 | |a Hilbertsche Modulfläche |0 (DE-588)4159854-4 |D s |
689 | 0 | 2 | |a Homologietheorie |0 (DE-588)4141714-8 |D s |
689 | 0 | 3 | |a Schnitttheorie |0 (DE-588)4179890-9 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Goresky, Mark |d 1950- |e Verfasser |0 (DE-588)1022423711 |4 aut | |
830 | 0 | |a Progress in mathematics |v 298 |w (DE-604)BV035421267 |9 298 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-0348-0351-9 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-024959835 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1007/978-3-0348-0351-9 |l BTU01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-0348-0351-9 |l TUM01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-0348-0351-9 |l UBA01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-0348-0351-9 |l UBM01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-0348-0351-9 |l UBT01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-0348-0351-9 |l UBW01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-0348-0351-9 |l UER01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-0348-0351-9 |l UPA01 |p ZDB-2-SMA |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804149054712578048 |
---|---|
any_adam_object | |
author | Getz, Jayce Robert Goresky, Mark 1950- |
author_GND | (DE-588)1022361333 (DE-588)1022423711 |
author_facet | Getz, Jayce Robert Goresky, Mark 1950- |
author_role | aut aut |
author_sort | Getz, Jayce Robert |
author_variant | j r g jr jrg m g mg |
building | Verbundindex |
bvnumber | BV040103332 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA |
ctrlnum | (OCoLC)798968301 (DE-599)DNB102122197X |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-0348-0351-9 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02814nmm a2200625zcb4500</leader><controlfield tag="001">BV040103332</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20120613 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">120417s2012 gw |||| o||u| ||||||eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">12,O04</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">102122197X</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783034803502</subfield><subfield code="9">978-3-0348-0350-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783034803519</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-0348-0351-9</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-0348-0351-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9783034803519</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)798968301</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB102122197X</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-634</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-29</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">510</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Getz, Jayce Robert</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1022361333</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Hilbert modular forms with coefficients in intersection homology and quadratic base change</subfield><subfield code="c">Jayce Getz ; Mark Goresky</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Basel [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">2012</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Progress in mathematics</subfield><subfield code="v">298</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hilbertsche Modulform</subfield><subfield code="0">(DE-588)4159855-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Homologietheorie</subfield><subfield code="0">(DE-588)4141714-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hilbertsche Modulfläche</subfield><subfield code="0">(DE-588)4159854-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Schnitttheorie</subfield><subfield code="0">(DE-588)4179890-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Hilbertsche Modulform</subfield><subfield code="0">(DE-588)4159855-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Hilbertsche Modulfläche</subfield><subfield code="0">(DE-588)4159854-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Homologietheorie</subfield><subfield code="0">(DE-588)4141714-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Schnitttheorie</subfield><subfield code="0">(DE-588)4179890-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Goresky, Mark</subfield><subfield code="d">1950-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1022423711</subfield><subfield code="4">aut</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Progress in mathematics</subfield><subfield code="v">298</subfield><subfield code="w">(DE-604)BV035421267</subfield><subfield code="9">298</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-0348-0351-9</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-024959835</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-0348-0351-9</subfield><subfield code="l">BTU01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-0348-0351-9</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-0348-0351-9</subfield><subfield code="l">UBA01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-0348-0351-9</subfield><subfield code="l">UBM01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-0348-0351-9</subfield><subfield code="l">UBT01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-0348-0351-9</subfield><subfield code="l">UBW01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-0348-0351-9</subfield><subfield code="l">UER01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-0348-0351-9</subfield><subfield code="l">UPA01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV040103332 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T00:16:56Z |
institution | BVB |
isbn | 9783034803502 9783034803519 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-024959835 |
oclc_num | 798968301 |
open_access_boolean | |
owner | DE-634 DE-20 DE-703 DE-19 DE-BY-UBM DE-91 DE-BY-TUM DE-29 DE-739 DE-384 DE-83 |
owner_facet | DE-634 DE-20 DE-703 DE-19 DE-BY-UBM DE-91 DE-BY-TUM DE-29 DE-739 DE-384 DE-83 |
physical | 1 Online-Ressource |
psigel | ZDB-2-SMA |
publishDate | 2012 |
publishDateSearch | 2012 |
publishDateSort | 2012 |
publisher | Springer |
record_format | marc |
series | Progress in mathematics |
series2 | Progress in mathematics |
spelling | Getz, Jayce Robert Verfasser (DE-588)1022361333 aut Hilbert modular forms with coefficients in intersection homology and quadratic base change Jayce Getz ; Mark Goresky Basel [u.a.] Springer 2012 1 Online-Ressource txt rdacontent c rdamedia cr rdacarrier Progress in mathematics 298 Hilbertsche Modulform (DE-588)4159855-6 gnd rswk-swf Homologietheorie (DE-588)4141714-8 gnd rswk-swf Hilbertsche Modulfläche (DE-588)4159854-4 gnd rswk-swf Schnitttheorie (DE-588)4179890-9 gnd rswk-swf Hilbertsche Modulform (DE-588)4159855-6 s Hilbertsche Modulfläche (DE-588)4159854-4 s Homologietheorie (DE-588)4141714-8 s Schnitttheorie (DE-588)4179890-9 s 1\p DE-604 Goresky, Mark 1950- Verfasser (DE-588)1022423711 aut Progress in mathematics 298 (DE-604)BV035421267 298 https://doi.org/10.1007/978-3-0348-0351-9 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Getz, Jayce Robert Goresky, Mark 1950- Hilbert modular forms with coefficients in intersection homology and quadratic base change Progress in mathematics Hilbertsche Modulform (DE-588)4159855-6 gnd Homologietheorie (DE-588)4141714-8 gnd Hilbertsche Modulfläche (DE-588)4159854-4 gnd Schnitttheorie (DE-588)4179890-9 gnd |
subject_GND | (DE-588)4159855-6 (DE-588)4141714-8 (DE-588)4159854-4 (DE-588)4179890-9 |
title | Hilbert modular forms with coefficients in intersection homology and quadratic base change |
title_auth | Hilbert modular forms with coefficients in intersection homology and quadratic base change |
title_exact_search | Hilbert modular forms with coefficients in intersection homology and quadratic base change |
title_full | Hilbert modular forms with coefficients in intersection homology and quadratic base change Jayce Getz ; Mark Goresky |
title_fullStr | Hilbert modular forms with coefficients in intersection homology and quadratic base change Jayce Getz ; Mark Goresky |
title_full_unstemmed | Hilbert modular forms with coefficients in intersection homology and quadratic base change Jayce Getz ; Mark Goresky |
title_short | Hilbert modular forms with coefficients in intersection homology and quadratic base change |
title_sort | hilbert modular forms with coefficients in intersection homology and quadratic base change |
topic | Hilbertsche Modulform (DE-588)4159855-6 gnd Homologietheorie (DE-588)4141714-8 gnd Hilbertsche Modulfläche (DE-588)4159854-4 gnd Schnitttheorie (DE-588)4179890-9 gnd |
topic_facet | Hilbertsche Modulform Homologietheorie Hilbertsche Modulfläche Schnitttheorie |
url | https://doi.org/10.1007/978-3-0348-0351-9 |
volume_link | (DE-604)BV035421267 |
work_keys_str_mv | AT getzjaycerobert hilbertmodularformswithcoefficientsinintersectionhomologyandquadraticbasechange AT goreskymark hilbertmodularformswithcoefficientsinintersectionhomologyandquadraticbasechange |