Electrothermics:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
London
ISTE
2012
Hoboken, NJ Wiley |
Ausgabe: | 1. publ. |
Schlagworte: | |
Online-Zugang: | Verlagsangaben Inhaltsverzeichnis |
Beschreibung: | XVII, 276 S. Ill., zahlr. graph. Darst. |
ISBN: | 9781848212428 |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV040036113 | ||
003 | DE-604 | ||
005 | 20120814 | ||
007 | t | ||
008 | 120410s2012 xxkad|| |||| 00||| eng d | ||
010 | |a 2011052451 | ||
020 | |a 9781848212428 |c hbk. |9 978-1-84821-242-8 | ||
035 | |a (OCoLC)796197120 | ||
035 | |a (DE-599)BVBBV040036113 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
044 | |a xxk |c GB | ||
049 | |a DE-703 | ||
050 | 0 | |a TK2950 | |
082 | 0 | |a 537.6/5 | |
084 | |a UP 5400 |0 (DE-625)146417: |2 rvk | ||
100 | 1 | |a Fouladgar, Javad |e Verfasser |4 aut | |
245 | 1 | 0 | |a Electrothermics |c ed. by Javad Fouladgar |
250 | |a 1. publ. | ||
264 | 1 | |a London |b ISTE |c 2012 | |
264 | 1 | |a Hoboken, NJ |b Wiley | |
300 | |a XVII, 276 S. |b Ill., zahlr. graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 4 | |a Thermoelectric apparatus and appliances | |
650 | 4 | |a Thermoelectricity | |
650 | 0 | 7 | |a Thermoelektrizität |0 (DE-588)4185148-1 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Thermoelektrizität |0 (DE-588)4185148-1 |D s |
689 | 0 | |5 DE-604 | |
856 | 4 | |u http://catdir.loc.gov/catdir/enhancements/fy1210/2011052451-d.html |3 Verlagsangaben | |
856 | 4 | 2 | |m Digitalisierung UB Bayreuth |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=024892910&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-024892910 |
Datensatz im Suchindex
_version_ | 1804149035227938816 |
---|---|
adam_text | Table
of
Contents
Introduction
........................................ xiii
Javad
FouLADGAR
Chapter
1.
Thermal and Electromagnetic Coupling
............... 1
Javad
Fouladgar,
Didier Trichet
and Brahim
Ramdane
1.1.
Introduction
.................................... 1
1.2.
Electromagnetic problem
............................ 2
1.2.1.
Local formulation of the electromagnetic problem
.......... 2
1.2.1.1.
Maxwell s equations
........................ 2
1.2.1.2.
Interaction between electromagnetic waves
and materials
................................. 3
1.2.1.3.
Vector and scalar potentials
.................... 4
1.2.2.
Boundary conditions
............................ 5
1.2.2.1.
Boundary conditions between two different media
...... 5
1.2.2.2.
Boundary conditions at the domain s limits
.......... 6
1.2.3.
Functional spaces
.............................. 6
1.2.4.
Tonti
diagrams
............................... 7
1.2.5.
Different formulations of the electromagnetic field
.......... 8
1.2.5.1.
Magnetostatic formulation
.................... 8
1.2.5.2.
Magnetostatic formulation in magnetic
vector potentials
............................... 10
1.2.5.3.
Magnetodynamic formulation
.................. 10
1.2.5.4.
Magnetodynamic formulation in A-V
.............. 11
1.2.5.5.
Magnetodynamic formulation in T-To-^
............ 11
1.2.5.6.
Formulation in
Я-ф
[DUL
96].................. 12
1.2.5.7.
Uniqueness conditions
....................... 12
1.2.6.
Time harmonic form
............................ 13
1.2.6.1.
Maxwell s equations in the time harmonic form
....... 13
vi Electrothermics
1.2.6.2.
Electromagnetic power
...................... 13
1.3.
Thermal
problem................................
15
1.4.
Magnetothermal
coupling...........................
16
1.5.
Solving the
electromagnetic
and thermal equations
............ 18
1.5.1.
Analytic methods
.............................. 18
1.5.1.1.
Transient state
............................ 18
1.5.1.2.
Harmonic state
........................... 18
1.5.2.
Semi-analytic methods
........................... 20
1.5.2.1.
Shell elements and surface impedance methods
........ 20
1.5.2.2.
Generalized shell element formulation
of a conductive plate
............................. 21
1.5.2.3.
Moment method
.......................... 23
1.5.3.
Numerical models
............................. 27
1.5.3.1.
Finite volume method without velocity terms
......... 28
1.5.3.2.
Finite volume method with a velocity term
.......... 30
1.5.3.3.
Finite element method
....................... 31
1.6.
Conclusion
.................................... 35
1.7.
Bibliography
................................... 36
Chapter
2.
Simplified Model of a Radiofrequency Inductive
Thermal Plasma Installation
............................. 39
Javad
FOULADGAR and Jean-Pierre Ploteau
2.1.
Introduction
.................................... 39
2.2.
Plasma and its characteristics
......................... 40
2.2.1.
Plasmas
.................................... 40
2.2.2.
Properties of thermal plasma
....................... 41
2.2.3.
Inductive thermal plasma
......................... 41
2.2.4.
Thermal inductive plasma installation
.................. 43
2.2.5.
Inductive thermal plasma start-up and maintenance
......... 44
2.2.5.1.
Plasma start-up
........................... 45
2.2.5.2.
Plasma maintenance
........................ 47
2.3.
Modeling a plasma installation
........................ 49
2.3.1.
Torch simulation
.............................. 50
2.3.1.1.
Simplification
............................ 50
2.3.1.2.
Solving the electromagnetic equation
.............. 51
2.3.1.3.
Solving the heat equation
..................... 53
2.4.
Calculating charge impedance
......................... 57
2.4.1.
Results
.................................... 57
2.4.2.
Local validations
.............................. 60
2.4.2.1.
Magnetic field measurement method
.............. 60
2.4.2.2.
Temperature measurement method
............... 60
2.4.2.3.
Results
................................ 62
Table
of
Contents
vii
2.5. Generator
model
................................. 64
2.5.1. Triode
generator
.............................. 64
2.5.2.
Modeling the
HF
generator in the steady state
............. 64
2.5.2.1.
Principle of the developed model
................ 65
2.5.2.2. Triode
modeling
.......................... 67
2.5.2.3.
Quasi-analytic generator simulation
............... 69
2.5.2.4.
Results
................................ 73
2.5.3.
Complete simulation of a thermal plasma installation
........ 75
2.5.3.1.
Coupling algorithm
......................... 75
2.5.3.2.
Validation of the complete installation simulation model
. . 76
2.5.3.3.
Calculating the installation s efficiency
............. 78
2.6.
Conclusion
.................................... 80
2.7.
Bibliography
................................... 81
Chapter
3.
Design Methodology of A Very Low-Frequency
Plasma Transformer
.................................. 85
Javad
Fouladgar and
Souri Mohamed Mimoune
3.1.
Introduction
.................................... 85
3.2.
Different types of very low-frequency applicators
............. 87
3.2.1.
Choice criterion of very low-frequency plasma applicators
..... 88
3.3.
Simplified analytical model for analysis and preliminary design
.... 88
3.3.1.
Hypotheses
.................................. 89
3.3.2.
System equation
............................... 90
3.3.3.
Plasma maintenance criterion
....................... 93
3.3.4.
Flaws of the linear model
......................... 95
3.4.
Nonlinear model
................................. 97
3.4.1.
Nonlinear model results
.......................... 98
3.5.
Plasma stability in the transitory and sinusoidal states
.......... 100
3.5.1.
Transitory state
............................... 100
3.5.2.
Sinusoidal state
............................... 101
3.6.
Advanced inductive plasma transformer model
.............. 103
3.6.1.
Displacement current
............................ 103
3.6.2.
Electromagnetic equation formulation
................. 104
3.6.2.1.
Introducing a voltage source
................... 105
3.6.3.
Thermal equation formulation
...................... 107
3.6.4.
Coupling algorithm for the electromagnetic
and thermal equations
............................... 107
3.6.5.
Results of the
3D
model
.......................... 109
3.6.6.
Impact of the number of arms of the magnetic core on the
electric field distribution
............................. 110
3.7.
Plasma initialization
...............................
Ill
3.7.1.
Initialization with
a capacitive
discharge
................ 112
viii Electrothermics
3.7.2.
Initialization with
an inductive
discharge................
112
3.7.3.
Towards an inductive ignitor
....................... 113
3.8.
Conclusion
.................................... 114
3.9.
Bibliography
................................... 114
Chapter
4.
Non
Destructive Testing by Thermo-Inductive Method
..... 117
Javad
Fouladgar, Brahim
Ramdane,
Didier Trichet
and Tayeb Saidi
4.1.
Introduction
.................................... 117
4.2.
Principles of the thermo-inductive method
................. 119
4.2.1.
Installation schematic
........................... 119
4.2.2.
Describing the technique s elements
.................. 121
4.2.2.1.
Induction generator
......................... 121
4.2.2.2.
The inductor
............................. 122
4.2.2.3.
The infrared camera
........................ 122
4.2.2.4.
The specimen to inspect
...................... 123
4.2.3.
The stimulation modes
........................... 123
4.2.3.1.
Modulated stimulation mode
................... 123
4.2.3.2.
Pulse stimulation mode
...................... 124
4.2.3.3.
Pulse phase mode
.......................... 125
4.3.
Basic thermo-inductive technique theory
.................. 126
4.3.1.
One-dimensional models for the propagation of the
thermal wave in a continuous medium
..................... 126
4.3.1.1.
Propagation of thermal waves in a semi-infinite
medium excited by a constant flux
..................... 127
4.3.1.2.
Propagation of thermal waves in a semi-infinite
plate with a horizontal flaw
......................... 132
4.3.2.
One-dimensional model limitations
................... 138
4.3.3.
Numerical models
............................. 141
4.3.3.1.
Electromagnetic models
...................... 141
4.3.4.
Magneto-thermal coupling
........................ 144
4.3.5.
Applying numerical model to study the feasibility
of the thermo-inductive technique
........................ 144
4.4.
Application of the thermo-inductive method to inspect
massive magnetic steel components
........................ 145
4.4.1.
Studied setup
................................ 145
4.4.2.
Flaw s influence on the distribution of the induced
currents and temperature
............................. 147
4.4.3.
Study of the inductor s influence
..................... 150
4.4.3.1.
Shape and position of the inductor
................ 150
4.4.3.2.
Air gap between the inductor and the
inspected component
............................. 150
Table
of
Contents
ix
4.4.4.
Choice of
induction
generator
...................... 152
4.4.5.
Acquisition parameters
.......................... 152
4.4.6.
Influence of the heating time and the electromagnetic
frequency
...................................... 154
4.4.6.1.
Heating time
............................. 154
4.4.6.2.
Electromagnetic frequency
.................... 156
4.4.7.
Influence of the flaw s geometry
..................... 157
4.4.7.1.
Influence of the flaw depth/flaw length ratio
.......... 157
4.4.7.2.
Flaw orientation
........................... 159
4.4.8.
Experimental results
............................ 162
4.5.
Comparison with infrared thermography
.................. 164
4.5.1.
Studied setup
................................ 164
4.6.
Applications on composite materials
..................... 168
4.6.1.
Study of composite materials
....................... 168
4.6.1.1.
Studied setup
............................ 169
4.6.1.2.
Study of the inductor s influence
................. 170
4.6.1.3.
Influence of the electromagnetic frequency and
heating time
.................................. 170
4.6.1.4.
Influence of the flaw depth
.................... 173
4.6.1.5.
Influence of flaw thickness
.................... 175
4.6.1.6.
Influence of the delamination width
............... 176
4.6.2.
Experimental study
............................. 177
4.6.2.1.
Inspection of the drilled plate
................... 178
4.6.2.2.
Inspection of the plate with a hole opening on
a surface
.................................... 182
4.7.
Conclusion and general instructions
..................... 185
4.7.1.
Discussion on the choice of induction generator
and inductor
..................................... 185
4.7.2.
Discussion on data acquisition
...................... 188
4.7.3.
Flaw characterization
......................... 189
4.7.3.1.
Surface flaws
............................ 189
4.7.3.2.
Deep flaws
.............................. 189
4.7.3.3.
Delaminations
............................ 190
4.8.
Bibliography
................................... 190
Chapters. Induction Heating of Composite Materials
............. 195
Javad
Fouladgar,
Didier
Тюснет,
Samir
Bensaid
and
Guillaume Wasselynck
5.1.
Introduction
.................................... 195
5.2.
Composite materials
............................... 197
5.2.1.
Composite material definition
...................... 197
5.2.2.
Composite material constituents
..................... 197
χ
Electrothermics
5.2.2.1.
The matrix
.............................. 198
5.2.2.2.
The reinforce
............................ 198
5.2.3.
Composite architecture
.......................... 200
5.3.
Lifecycle of composite materials
....................... 202
5.4.
Induction and the lifecycle of composite materials
............ 203
5.4.1.
Mastery of induction heating of composite materials
......... 203
5.4.1.1.
Simulation tool
........................... 203
5.4.1.2.
Adapting the inductor s form and frequency to the
geometry, the material, and the type of heating
............. 204
5.4.1.3.
Precise knowledge of the physical properties
......... 206
5.5.
Identifying the physical properties of composite materials
by experimental methods
.............................. 207
5.5.1.
Influence of the geometry
......................... 207
5.5.2.
Induced current methods
.......................... 209
5.5.2.1.
Measuring the electrical conductivity of a
conductive plate
................................ 210
5.5.2.2.
Analytic impedance calculation
................. 211
5.5.2.3.
2D numerical method
....................... 214
5.5.3.
Sensitivity analysis
............................. 217
5.5.4.
Impedance measurements
......................... 219
5.5.4.1.
Optimization of the measurement system
........... 219
5.5.4.2.
Experimentation and results
................... 222
5.6.
Homogenization techniques
.......................... 224
5.6.1.
Inverse problem
............................... 225
5.6.1.1.
Application of the inverse problem to stratified
composite materials
............................. 226
5.6.1.2.
Thermal characteristics
...................... 228
5.6.2.
Dynamic homogenization methods for periodic structures
..... 231
5.6.2.1.
Homogenization of the electrical conductivity
......... 232
5.6.2.2.
Thermal properties
......................... 234
5.6.2.3.
Applications to the 2D electromagnetic study of
composite materials
............................. 235
5.6.2.4.
Applications to the 2D thermal study of
composite materials
............................. 241
5.6.2.5.
Applications to
3D
materials
................... 241
5.6.3.
Homogenization by the representative samples method
....... 243
5.6.3.1.
The method s principle
...................... 244
5.6.3.2.
Generating the geometry
..................... 246
5.6.3.3.
Results
................................ 248
5.6.3.4.
Influence of contacts between differently
oriented folds
................................. 249
5.7.
Heating composite materials by induction
.................. 251
Table
of
Contents
xi
5.7.1.
Studied setup
................................ 251
5.7.2.
Inductor
.................................... 251
5.7.3.
The composite plates
............................ 252
5.7.4.
Experimental validation setup
...................... 253
5.8.
Setup model
................................... 253
5.8.1.
Electromagnetic formulation
....................... 254
5.8.2.
Thermal formulation
............................ 255
5.9.
Influence of the folds orientation
....................... 260
5.10.
Difficulty of the electrothermal coupling
................. 262
5.10.1.
Study of the sensitivity of the induced power
s
variation as a
function of the temperature
............................ 262
5.11.
Validating the electrothermal model
.................... 262
5.11.1.
13-fold composite
............................. 263
5.11.2.
16-fold composite
............................. 265
5.12.
Conclusion
................................... 267
5.13.
Bibliography
.................................. 268
List of Authors
...................................... 273
Index
............................................ 275
|
any_adam_object | 1 |
author | Fouladgar, Javad |
author_facet | Fouladgar, Javad |
author_role | aut |
author_sort | Fouladgar, Javad |
author_variant | j f jf |
building | Verbundindex |
bvnumber | BV040036113 |
callnumber-first | T - Technology |
callnumber-label | TK2950 |
callnumber-raw | TK2950 |
callnumber-search | TK2950 |
callnumber-sort | TK 42950 |
callnumber-subject | TK - Electrical and Nuclear Engineering |
classification_rvk | UP 5400 |
ctrlnum | (OCoLC)796197120 (DE-599)BVBBV040036113 |
dewey-full | 537.6/5 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 537 - Electricity and electronics |
dewey-raw | 537.6/5 |
dewey-search | 537.6/5 |
dewey-sort | 3537.6 15 |
dewey-tens | 530 - Physics |
discipline | Physik |
edition | 1. publ. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01508nam a2200421zc 4500</leader><controlfield tag="001">BV040036113</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20120814 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">120410s2012 xxkad|| |||| 00||| eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">2011052451</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781848212428</subfield><subfield code="c">hbk.</subfield><subfield code="9">978-1-84821-242-8</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)796197120</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV040036113</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxk</subfield><subfield code="c">GB</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK2950</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">537.6/5</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UP 5400</subfield><subfield code="0">(DE-625)146417:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Fouladgar, Javad</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Electrothermics</subfield><subfield code="c">ed. by Javad Fouladgar</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1. publ.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">London</subfield><subfield code="b">ISTE</subfield><subfield code="c">2012</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Hoboken, NJ</subfield><subfield code="b">Wiley</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XVII, 276 S.</subfield><subfield code="b">Ill., zahlr. graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Thermoelectric apparatus and appliances</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Thermoelectricity</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Thermoelektrizität</subfield><subfield code="0">(DE-588)4185148-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Thermoelektrizität</subfield><subfield code="0">(DE-588)4185148-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2=" "><subfield code="u">http://catdir.loc.gov/catdir/enhancements/fy1210/2011052451-d.html</subfield><subfield code="3">Verlagsangaben</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=024892910&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-024892910</subfield></datafield></record></collection> |
id | DE-604.BV040036113 |
illustrated | Illustrated |
indexdate | 2024-07-10T00:16:37Z |
institution | BVB |
isbn | 9781848212428 |
language | English |
lccn | 2011052451 |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-024892910 |
oclc_num | 796197120 |
open_access_boolean | |
owner | DE-703 |
owner_facet | DE-703 |
physical | XVII, 276 S. Ill., zahlr. graph. Darst. |
publishDate | 2012 |
publishDateSearch | 2012 |
publishDateSort | 2012 |
publisher | ISTE Wiley |
record_format | marc |
spelling | Fouladgar, Javad Verfasser aut Electrothermics ed. by Javad Fouladgar 1. publ. London ISTE 2012 Hoboken, NJ Wiley XVII, 276 S. Ill., zahlr. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Thermoelectric apparatus and appliances Thermoelectricity Thermoelektrizität (DE-588)4185148-1 gnd rswk-swf Thermoelektrizität (DE-588)4185148-1 s DE-604 http://catdir.loc.gov/catdir/enhancements/fy1210/2011052451-d.html Verlagsangaben Digitalisierung UB Bayreuth application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=024892910&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Fouladgar, Javad Electrothermics Thermoelectric apparatus and appliances Thermoelectricity Thermoelektrizität (DE-588)4185148-1 gnd |
subject_GND | (DE-588)4185148-1 |
title | Electrothermics |
title_auth | Electrothermics |
title_exact_search | Electrothermics |
title_full | Electrothermics ed. by Javad Fouladgar |
title_fullStr | Electrothermics ed. by Javad Fouladgar |
title_full_unstemmed | Electrothermics ed. by Javad Fouladgar |
title_short | Electrothermics |
title_sort | electrothermics |
topic | Thermoelectric apparatus and appliances Thermoelectricity Thermoelektrizität (DE-588)4185148-1 gnd |
topic_facet | Thermoelectric apparatus and appliances Thermoelectricity Thermoelektrizität |
url | http://catdir.loc.gov/catdir/enhancements/fy1210/2011052451-d.html http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=024892910&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT fouladgarjavad electrothermics |