Vibrational optical activity: principles and applications
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Chichester
Wiley
2011
|
Schlagworte: | |
Online-Zugang: | Klappentext Inhaltsverzeichnis |
Beschreibung: | Includes bibliographical references and index |
Beschreibung: | XX, 378 S. Ill., graph. Darst. |
ISBN: | 9780470032480 9781119976516 |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV039934735 | ||
003 | DE-604 | ||
005 | 20140630 | ||
007 | t | ||
008 | 120305s2011 xxuad|| |||| 00||| eng d | ||
010 | |a 2011012255 | ||
020 | |a 9780470032480 |c cloth |9 978-0-470-03248-0 | ||
020 | |a 9781119976516 |c oBook |9 978-1-1199-7651-6 | ||
035 | |a (OCoLC)752226876 | ||
035 | |a (DE-599)BVBBV039934735 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
044 | |a xxu |c US | ||
049 | |a DE-703 |a DE-188 |a DE-19 | ||
050 | 0 | |a QC454.V5 | |
082 | 0 | |a 539.6 | |
084 | |a UM 3200 |0 (DE-625)145882: |2 rvk | ||
084 | |a VE 8700 |0 (DE-625)147150:253 |2 rvk | ||
100 | 1 | |a Nafie, Laurence A. |e Verfasser |0 (DE-588)173887880 |4 aut | |
245 | 1 | 0 | |a Vibrational optical activity |b principles and applications |c Laurence A. Nafie |
264 | 1 | |a Chichester |b Wiley |c 2011 | |
300 | |a XX, 378 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
500 | |a Includes bibliographical references and index | ||
650 | 4 | |a Vibrational spectra | |
650 | 0 | 7 | |a Molekulardynamik |0 (DE-588)4170370-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Molekülspektroskopie |0 (DE-588)4128850-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Schwingungsspektroskopie |0 (DE-588)4128960-2 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Molekulardynamik |0 (DE-588)4170370-4 |D s |
689 | 0 | 1 | |a Schwingungsspektroskopie |0 (DE-588)4128960-2 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Molekülspektroskopie |0 (DE-588)4128850-6 |D s |
689 | 1 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe, EPUB |z 978-1-1199-7753-7 |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe, MOBI |z 978-1-1199-7754-4 |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe, PDF |z 978-1-1199-7650-9 |
856 | 4 | 2 | |m Digitalisierung UB Bayreuth |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=024792920&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Klappentext |
856 | 4 | 2 | |m Digitalisierung UB Bayreuth |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=024792920&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-024792920 |
Datensatz im Suchindex
_version_ | 1804148900833001472 |
---|---|
adam_text | Contents
Preface
xv¡¡
1
Overview of Vibrational Optical Activity
1
1.1
Introduction to Vibrational Optical Activity
1
1.1.1
Field of Vibrational Optical Activity
1
1.1.2
Definition of Vibrational Circular Dichroism
3
1.1.3
Definition of Vibrational Raman Optical Activity
5
1.1.4
Unique Attributes of Vibrational Optical Activity
7
1.1.4.1
VOA
is the Richest Structural Probe of Molecular
Chirality
7
1.1.4.2
VOA
is the Most Structurally Sensitive Form of
Vibrational Spectroscopy
8
1.1.4.3
VOA
Can be Used to Determine Unambiguously the
Absolute Configuration of a Chiral Molecule
8
1.1.4.4
VOA
Spectra Can be Used to Determine the Solution-State
Conformer
Populations
8
1.1.4.5
VOA
Can be Used to Determine the
ее
of Multiple
Chiral Species of Changing Absolute and Relative
Concentration
8
1.2
Origin and Discovery of Vibrational Optical Activity
9
1.2.1
Early Attempts to Measure
VOA
9
1.2.2
Theoretical Predictions of VCD
10
1.2.3
Theoretical Predictions of
ROA
11
1.2.4
Discovery and Confirmation of
ROA
11
1.2.5
Discovery and Confirmation of VCD
13
1.3
VCD Instrumentation Development
14
1.3.1
First VCD Measurements
-
Dispersive, Hydrogen-Stretching
Region
14
1.3.2
Near-IR VCD Measurements
14
1.3.3
Mid-IR VCD Measurements
15
1.3.4
Fourier Transform VCD Instrumentation
15
1.3.5
Commercially Available VCD Instrumentation
15
1.4
ROA
Instrumentation Development
16
1.4.1
First
ROA
Measurements
-
Single Channel ICP-ROA
16
1.4.2
Multi-Channel
ROA
Measurements
17
1.4.3
Backscattering
ROA
Measurements
17
1.4.4
SCP-ROA Measurements
17
1.4.5
DCP-ROA Measurements 18
1.4.6
Commercially Available
ROA
Instruments
18
viii Contents
1.5 Development
of VCD Theory and Calculations
1.5.1
Models of VCD Spectra
1.5.1.1
Coupled Oscillator Model
1.5.1.2
Fixed Partial Charge Model
1.5.1.3
Localized Molecular Orbital Model
1.5.1.4
Charge Flow Model
1.5.1.5
Ring Current Model
1.5.2
Vibronic Coupling Theory of VCD
.5.3
Magnetic Field Perturbation Formulation of VCD
.5.4
Nuclear Velocity Perturbation Formulation of VCD
.5.5 Ab Initio
Calculations of VCD Spectra
.5.6
Commercially Available Software for VCD Calculations
1.6
Development of
ROA
Theory and Calculations
1.6.1
Original Theory of
ROA
.6.2
Models of
ROA
Spectra
.6.3
General Unrestricted Theory of Circular Polarization
ROA
.6.4
Linear Polarization
ROA
.6.5
Theory of Resonance
ROA
in the
SES
Limit
.6.6
Near Resonance Theory of
ROA
.6.7 Ab
Initio Calculations of
ROA
Spectra
1.6.8
Quantum Chemistry Programs for
ROA
Calculations
1
.7
Applications of Vibrational Optical Activity
1.7.1
Biological Applications of
VOA
1.7.2
Absolute Configuration Determination
1.7.3
Solution-State Conformation Determination
1.7.4
Enantiomeric Excess and Reaction Monitoring
1.7.5
Applications with Solid-Phase Sampling
1.8
Comparison of Infrared and Raman Vibrational Optical Activity
1.8.1
Frequency Ranges and Structural Sensitivities
1.8.2
Instrumental Advantages and Disadvantages
1.8.3
Sampling Methods and Solvents
1.8.4
Computational Advantages and Disadvantages
1.9
Conclusions
References
Vibrational Frequencies and Intensities
2.1
Separation of Electronic and Vibrational Motion
2.1.1
Bom-Oppenheimer Approximation
2.1.2
Electronic Structure Problem
2.1.3
Nuclear Structure Problem
2.1.4
Nuclear Potential Energy Surface
2.1.5
Transitions Between Electronic States
2.1.6
Electronic Transition Current Density
2.2
Normal Modes of Vibrational Motion
2.2.1
Vibrational Degrees of Freedom
2.2.2
Normal Modes of Vibrational Motion
2.2.3
Visualization of Normal Modes
2.2.4
Vibrational Energy Levels and States
2.2.5
Transitions Between Vibrational States
2.2.6
Complete Adiabatic Approximation
2.2.7
Vibrational Probability Density and Vibrational Transition
Current Density
18
19
19
19
19
19
20
20
20
21
21
22
22
22
23
23
23
24
24
24
25
25
25
26
26
27
27
28
28
29
29
30
30
30
35
35
35
36
37
38
38
40
41
42
42
43
44
45
45
47
Contents ix
2.3
Infrared Vibrational
Absorption
Intensities
48
2.3.1 Position and Velocity Dipole
Strengths
49
2.3.2
Atomic
Polar Tensors 52
2.3.3
Nuclear Dependence of the Electronic Wavefunction
53
2.3.4
Vibronic Coupling Formulation of
VA
Intensities
54
2.3.5
Equivalence Relationships
55
2.4
Vibrational Raman Scattering Intensities
56
2.4.1
General Unrestricted (GU) Theory of Raman Scattering
57
2.4.2
Vibronic Theory of Raman Intensities
58
2.4.3
Raman Scattering Tensors and Invariants
60
2.4.4
Polarization Experiments and Scattering Geometries
60
2.4.5
Depolarization and Reversal Ratios
62
2.4.6
Isolation of Raman Scattering Invariants
63
2.4.7
Far-From-Resonance Approximation
63
2.4.8
Near Resonance Theory of Raman Scattering
65
2.4.9
Resonance Raman Scattering
67
2.4.10
Single Electronic State Resonance Approximation
68
References
69
Molecular Chirality and Optical Activity
71
3.1
Definition of Molecular Chirality
71
3.1.1
Historical Origins
72
3.1.2
Molecular Symmetry Definition of Chirality
72
3.1.3
Absolute Configuration of Chiral Molecules
73
3.1.3.1
Chiral Center
73
3.1.3.2
Helix
74
3.1.3.3
Chiral Axis
74
3.1.3.4
Chiral Plane
75
3.1.4
True and False Chirality
75
3.1.5
Enantiomers, Diastereomers, and Racemic Mixtures
75
3.2
Fundamental Principles of Natural Optical Activity
76
3.2.1
Polarization States of Radiation
76
3.2.2
Mueller Matrices and Stokes Vectors
78
3.2.3
Definition of Optical Activity
79
3.2.4
Optical Activity
Observables
79
3.2.4.1
Complex Index of Refraction
80
3.2.4.2
Absorption
Observables
80
3.2.4.3
Circular Dichroism and Ellipticity
Observables
81
3.2.4.4
Optical Rotation Angle and Optical Rotatory Dispersion
Observables
82
3.3
Classical Forms of Optical Activity
83
3.3.1
Optical Rotation and Optical Rotatory Dispersion
83
3.3.2
Circular Dichroism
83
3.3.3
Kramers-Kronig Transform Between CD and
ORD
84
3.3.4
Lorentzian Dispersion and Absorption Relationships
85
3.3.5 Dipole
and Rotational Strengths
86
3.3.6
Magnetic Optical Activity
88
3.4
Newer Forms of Optical Activity
88
3.4.1
Infrared Optical Activity, VCD, and IR-ECD
89
3.4.1.1
VCD-ECD Overlap
89
χ
Contents
3.4.2
Vacuum Ultraviolet and
Synchrotron
Circular Dichroism
89
3.4.3
Rayleigh
and Raman Optical Activity, RayOA and
ROA
90
3.4.3.1
ROA
Overlaps
90
3.4.4
Magnetic Vibrational Optical Activity
90
3.4.5
Fluorescence Optical Activity, FDCD and CPL
91
3.4.5.1
FOA
and
ROA
Overlap
91
3.4.6
Other Forms of Optical Activity
91
3.4.6.1
Х
-Ray Circular Dichroism
92
3.4.6.2
Neutron Optical Activity
92
3.4.6.3
Far-Infrared and Rotational CD
92
3.4.6.4
NMR Chiral Discrimination
92
References
92
4
Theory of Vibrational Circular Dichroism
95
4.1
General Theory of VCD
96
4.1.1
Definitions of VCD Intensity and Rotational Strength
97
4.1.2
Complete Adiabatic Correction to the Born-Oppenheimer
Approximation
98
4.1.3
Derivation of the Complete Adiabatic Wavefunction
100
4.1.4
Vibronic Coupling Theory of VCD and
IR
Intensity
102
4.1.5
Origin Dependence of the Rotational Strength
105
4.1.5.1
General Description of Origin Dependence
105
4.1.5.2
Distributed Origin Gauge and Effective Origin
Independence
106
4.2
Formulations of VCD Theory
108
4.2.1
Average Excited-State Energy Approximation
108
4.2.2
Magnetic Field Perturbation Theory
108
4.2.3
Sum-Over-States Vibronic Coupling Theory
110
4.2.4
Nuclear Velocity Perturbation Theory
110
4.2.5
Energy Second-Derivative Theory
111
4.2.6
Other Formulations of VCD Theory
113
4.3
Atomic Orbital Level Formulations of VCD Intensity
114
4.3.1
Atomic Orbital Basis Descriptions of Transition Moments
114
4.3.1.1
Position Form of the Electronic APT
114
4.3.1.2
Velocity Form of the Electronic APT
116
4.3.1.3
Electronic AAT
118
4.3.2
Velocity Dependent Atomic
Orbitals 118
4.3.2.1
Field Adiabatic Velocity Gauge
119
4.3.2.2
Complete Adiabatic Nuclear Velocity Gauge
119
4.3.3
Field Adiabatic Velocity Gauge Transition Moments
120
4.3.4
Gauge Invariant Atomic
Orbitals
and AATs
120
4.3.5
Complete Adiabatic Nuclear Velocity Gauge
Transition Moments
122
4.3.5.1
Velocity APT with Nuclear Velocity Gauge
Atomic
Orbitals 122
4.4
Transition Current Density and VCD Intensities
124
4.4.1
Relationship Between Vibrational TCD and
VA
Intensity
125
4.4.2
Relationship Between Vibrational TCD and VCD Intensity
128
References
130
Contents xi
5
Theory of Raman Optical Activity 131
5.1
Comparison of
ROA
to VCD Theory j3j
5.2
Far-From Resonance Theory (FFR) of
ROA
Ј33
5.2.1
Right-Angle
ROA
Scattering 133
5.2.2
Backscattering
ROA
135
5.2.3
Forward and Magic Angle Scattering
ROA
136
5.3
General Unrestricted
(GU)
Theory of
ROA I37
5.3.1
ROA
Tensors 137
5.3.2
Forms of
ROA
14]
5.3.3
CP-ROA Invariants j41
5.3.4
CP-ROA
Observables
and Invariant Combinations
143
5.3.5
Backscattering CP-ROA
Observables I45
5.3.6
LP-ROA Invariants
146
5.3.7
LP-ROA
Observables
and Invariant Combinations
148
5.4
Vibronic Theories of
ROA 14g
5.4.1
General Unrestricted Vibronic
ROA
Theory
149
5.4.2
Vibronic Levels of Approximation
150
5.4.3
Near Resonance Vibronic Raman Theory
150
5.4.4
Levels of the Near Resonance Raman Theory
153
5.4.5
Near Resonance Theory of
ROA
157
5.4.6
Reduction of the Near Resonance Theory to the Far-From
Resonance Theory of
ROA
157
5.5
Resonance
ROA
Theory
159
5.5.1
Strong Resonance in the Single Electronic State
(SES)
Limit
159
5.5.2
Strong Resonance Involving Two Excited Electronic States
163
5.5.2.1
TES
Theory With a Single B-Term Contributing State (TES-B)
163
5.5.2.2
TES
Theory with two
А
-Term
Contributing States (TES-A)
166
References
167
б
Instrumentation for Vibrational Circular Dichroism
169
6.1
Polarization Modulation Circular Dichroism
169
6.1.1
Instrumental Measurement of Circular Dichroism
170
6.1.2
Calibration of CD Intensities
173
6.1.3
Photoelastic Modulator Optimization
176
6.2
Stokes-Mueller Optical Analysis
177
6.2.1
Basic Stokes-Mueller Formalism
177
6.2.2
Stokes-Mueller Derivation of Circular Dichroism Measurement
183
6.2.3
Stokes-Mueller Derivation of the CD Calibration
184
6.2.4
Measurement of Circular Birefringence
185
6.3
Fourier Transform VCD Measurement
187
6.3.1
Double-Modulation Instrumental Setup and Block Diagram
188
6.3.2
DC Interferogram and Phase Correction
188
6.3.3
AC Interferogram and Phase Correction
190
6.3.4
Polarization Division FT-VCD Measurement
192
6.3.5
Step-Scan FT-VCD Measurement
92
6.4
Commercial Instrumentation for VCD Measurement
193
6.4.1
VCD Side-Bench Accessories
93
6.4.2
Dedicated VCD Spectrometers
94
6.5
Advanced VCD Instrumentation 194
6.5.1
Dual Source Intensity Enhancement and Detector Saturation Suppression
194
xii Contents
6.5.2 Dual-PEM
Theory of Artifact Suppression
196
6.5.3
Rotating Achromatic Half-Wave Plate
199
6.5.4
Rotating Sample Cell
200
6.5.5
Direct All-Digital VCD Measurement and Noise Improvement
201
6.5.6
Femtosecond-IR Laser-Pulse
VOA
Measurements
202
References
203
7
Instrumentation for Raman Optical Activity
205
7.1
Incident Circular Polarization
ROA
205
7.1.1
Optical Block Diagram for ICP-Raman and
ROA
Scattering
207
7.1.2
Intensity Expressions
208
7.1.3
Advantages of Backscattering
209
7.1.4
Artifact Suppression
210
7.2
Scattered Circular Polarization
ROA
211
7.2.1
Measurement of SCP-ROA and Raman Scattering
212
7.2.2
Optical Block Diagram for SCP-Raman and
ROA
Measurement
213
7.2.3
Comparison of ICP-and SCP-ROA
214
7.2.4
Artifact Reduction in SCP-ROA Measurement
215
7.3
Dual Circular Polarization
ROA
215
7.3.1
Optical Setups for DCP-ROA Measurement
217
7.3.2
Comparison of ICP-,
SCP-,
and DCP,-ROA
218
7.3.3
Isolation of
ROA
Invariants
219
7.3.4
DCPh-ROA and the Onset of Pre-resonance Raman Scattering
220
7.4
Commercial Instrumentation for
ROA
Measurement
222
7.4.1
High Spectral Throughput
222
7.4.2
Artifact Suppression and the Virtual Enantiomer
224
7.5
Advanced
ROA
Instrumentation
225
7.5.1
Resonance
ROA (RROA)
226
7.5.2
Near-Infrared Excitation
ROA
226
7.5.3
Ultraviolet Excitation
ROA
227
7.5.4
Linear Polarization
ROA
227
7.5.5
Non-Linear and Time-Resolved
ROA
229
7.5.6
Surfaced-Enhanced
ROA
230
7.5.7
Rayleigh Optical Activity
230
References
231
8
Measurement of Vibrational Optical Activity
233
8.1
VOA
Spectral Measurement
233
8.2
Measurement of
IR
and VCD Spectra
234
8.2.1
Selection of Frequency Range, Detector and Optical Components
234
8.2.1.1
Mid-Infrared Spectral Region
234
8.2.1.2
Hydrogen-Stretching Region
235
8.2.1.3
First Overtone and Combination-Band Region
236
8.2.1.4
Second Overtone and Second Combination Band Region
236
8.2.1.5
Third Overtone and Combination Band Region and Beyond
236
8.2.2
Choice of
IR
Solvents
236
8.2.3
Optimization of Concentration, Pathlength, and Spectral Resolution
237
8.2.4
Measurement and Optimization of VCD Spectra
238
8.2.4.1
Fourier Phase Correction for the VCD Interferogram
239
8.2.4.2
Setting the Retardation Value of the First
РЕМ
239
Contents xiii
8.2.4.3
Calibration of the Intensity and Sign of the VCD Spectrum
239
8.2.4.4
Check of Signal-Averaging Improvement
241
8.2.4.5
VCD Baseline Correction and Artifact Elimination
241
8.2.4.6
Dual
РЕМ
with Rotating Sample Cell and Artifact Reduction
242
8.2.5
Solid-Phase VCD Sampling
243
8.2.6
Presentation of
IR
and VCD Spectra with Noise Spectra
249
8.3
Measurement of Raman and
ROA
Spectra
251
8.3.1
Choice of Form of
ROA
and Scattering Geometry
251
8.3.2
Raman and
ROA
Sampling Methods
252
8.3.2.
J
Sample Cells and Accessories
252
8.3.2.2
Sample Purification and Fluorescence Reduction
252
8.3.3
Instrument Laser Alignment
252
8.3.4
ROA
Artifact Suppression
253
8.3.4.1
Artifact Reduction Scheme of Hug
253
8.3.4.2
Artifact Suppression for Backscattered SCPu Measurement
254
8.3.5
Forms of Backscattering
ROA
and their Artifacts
254
8.3.5.1
Direct Measurement of all Four Forms of
ROA
Intensities
255
8.3.5.2
Artifacts from Imbalance in Incident CP Intensities
256
8.3.5.3
Artifacts from Imbalance in the Detection of
Scattered CP Intensities
256
8.3.5.4
Artifacts from Imbalance in both Incident and
Scattered CP Intensities
257
8.3.6
Presentation of Raman and
ROA
Spectra
258
References
259
Calculation of Vibrational Optical Activity
261
9.1
Quantum Chemistry Formulations of
VOA
261
9.1.1
Formulation of
VA
Intensities
262
9.1.2
Formulation of VCD Intensities
266
9.1.3
Formulation of Raman Scattering
268
9.1.4
Formulation of
ROA
Intensities
270
9.1.5
Additional Aspects of
VOA
Intensity Formulation
272
9.1.5.1
Analytic Derivatives Versus Finite Difference Derivatives
273
9.1.5.2
Gauge-Origin Independent Formulations
273
9.1.5.3
Incident Frequency Dependence for
ROA
273
9.2
Fundamental Steps of
VOA
Calculations
274
9.2.1
Choice of Model Quantum Chemistry
274
9.2.2
Conformational Search
274
9.2.3
Optimization of Geometries
275
9.2.4
Solvent Corrections and Modeling
275
9.2.5
Force Fields and Vibrational Frequencies
276
9.2.6
Vibrational Intensities
276
9.2.7
Bandshape Presentation of Spectra
276
9.2.8
Weighting Spectra of Conformers
277
9.2.9
Comparison of Calculated and Experimental Spectra
278
9.3
Methods and Visualization of
VOA
Calculations
282
9.3.1
Recommended Methods for VCD Calculations
283
9.3.2
Recommended Methods for
ROA
Calculations
284
9.3.3
Visualization of VCD and
VA
Spectra
285
9.3.4
Visualization of
ROA
and Raman Spectra
288
xiv Contents
9.4
Calculation of Electronic Optical Activity
289
9.4.1
Calculation of Optical Rotation
290
9.4.2
Calculation of Electronic Circular Dichroism
290
9.4.3
Calculation of Rayleigh Optical Activity
291
References
291
10
Applications of Vibrational Optical Activity
293
10.1
Classes of Chiral Molecules
293
10.1.1
Simple Organic Molecules
293
10.1.2
Pharmaceutical Molecules
294
10.1.3
Natural Product Molecules
294
10.1.4
Metal Complexes
294
10.1.5
Oligomers
and Polymers
295
10.1.6
Biological Molecules
295
10.1.7
Supramolecular Chiral Assemblies
295
10.2
Determination of Absolute Configuration
296
10.2.1
Importance of Absolute Configuration Determination
296
10.2.2
Comparison with
Х
-Ray Crystallography
297
10.2.3
Comparison with Electronic Optical Activity
298
10.2.4
Efficiency of VCD Determination of AC
299
10.2.5
Determination of Solution-State Conformation
299
10.2.6
Coupled Oscillator Model AC Determination
302
10.3
Determination of Enantiomeric Excess and Reaction Monitoring
302
10.3.1
Single Molecule %ee Determination
303
10.3.2
Two-Molecule Simulated Reaction Monitoring
303
10.3.3
Near-IR FT-VCD %ee and Simulated Reaction Monitoring
304
10.3.4
Near-IR Reaction Monitoring of an
Epimerizaţion
Reaction
306
10.4
Biological Applications of
VOA
307
10.4.1
VCD and
ROA
Amino
Acids
308
10.4.2
VOA
of Peptides and Polypeptides
309
10.4.3
ROA
of Proteins
316
10.4.4
VCD of Proteins
318
10.4.5
ROA
of Viruses
320
10.4.6
VCD Calculations of Peptides
321
10.4.7
VCD Calculations of Nucleic Acids
322
10.4.8
ROA
Calculations of Peptides and Proteins
322
10.4.9
VOA
of Supramolecular Biological Structures
325
10.4.9.1
VOA
of Bacteria
Flagella
326
10.4.9.2
VCD of Protein Fibrils and Other Supramolecular Assemblies
327
10.4.9.3
VCD of Spray-Dried Films
329
10.4.9.4
VCD of Other Biological Structures
329
10.5
Future Applications of
VOA
329
References
330
Appendices
A Models of
VOA
Intensity
335
A.
1
Estimate of CD Intensity Relative to Absorption Intensity
335
A.2 Degenerate Coupled Oscillator Model of Circular Dichroism
336
A.3 Fixed Partial Charge Model of VCD
338
Contents xv
A.4
Localized Molecular Orbital Model of VCD
340
A.5 Ring Current Model and Other Vibrational Electronic Current Models
341
A.6 Two-Group and Related Models of
ROA
342
References
342
В
Derivation of Probability and Current Densities from Multi-Electron
Wavefunctions for Electronic and Vibrational Transitions
345
B.I Transition Probability Density
345
B.2 Transition Current Density
347
B.3 Conservation of Transition Probability and Current Density
348
B.4 Conservation Equation for Vibrational Transitions
349
References
351
С
Theory of VCD for Molecules with Low-Lying Excited Electronic States
353
C.I Background Theoretical Expressions
353
C.2 Lowest-Order Vibronic Theory Including Low-Lying Electronic States
355
C.3 Vibronic Energy Approximation
356
C.4 Low-Lying Magnetic-Dipole-Allowed Excited Electronic States
360
Reference
361
D
Magnetic VCD in Molecules with Non-Degenerate States
363
D.I General Theory
363
D.2 Combined Complete Adiabatic and Magnetic-Field Perturbation Formalism
364
D.3 Vibronic Coupling B-Term Derivation
365
D.4 MCD from Transition Metal Complexes with Low-Lying Electronic States
367
References
368
Index
369
VIBRATIONAL
OPTICAL
ACTIVITY
Principles and Applications
Laurence A. Nafie Department of Chemistry, Syracuse University, USA
Vibrational optical activity
(VOA)
is comprised of two closely related areas of molecular spectroscopy,
infrared vibrational circular dichroism (VCD) and vibrational Raman optical activity
(ROA).
Both of
these areas were discovered experimentally in the early
1970s
and have since matured into a new
field of science at the interface of vibrational spectroscopy and molecular chirality. Vibrational optical
activity has come of age with the availability of commercial instruments and computational programs
which now enable non-specialists to apply both infrared and Raman optical activity to a wide range
of chemical and biomolecular problems.
This book will take the reader from the basic theory through the practical and instrumental approaches,
providing a unified, comprehensive description to the field of
VOA
that gives both introductory and
in-depth coverage to VCD and
ROA.
Applications include the analysis of all classes of chiral molecules,
for example organic and inorganic molecules, metal complexes, pharmaceutical and natural product
molecules, and the full range of biological molecules such as
amino
acids, peptides, sugars, proteins,
protein fibrils, carbohydrates, nucleic acids, viruses and bacteria.
This comprehensive volume will serve both as an introduction and complete reference for this
relatively new, but increasingly important, area of molecular spectroscopy. Written in a thorough
and progressive style, it will appeal to advanced undergraduates, graduates and research groups in
academia
as well as researchers and technicians in the pharmaceutical and biotechnology industries.
About the Author
Laurence Nafie is Distinguished Professor Emeritus at Syracuse University where, as a faculty member
since
1975,
he has been a leading world authority on
VOA.
He confirmed experimentally the first
observation of infrared VCD, was the first to propose and measure Fourier transform VCD, and is
the discoverer of several of the forms of
ROA.
He has also contributed to the theoretical foundations
of both VCD and
ROA.
For nearly four decades, he has carried out research in the field of
VOA
and
in
1996
co-founded the company
BioTools
for the commercialization of advanced
spectroscopie
instrumentation, including VCD and
ROA
spectrometers and services. He was also the founding
Editor of the journal Biospectroscopy that subsequently merged with
Biopolymers,
and he is currently
Editor-in-Chief of the Journal of Raman Spectroscopy.
ISBN
978-0-470-03248-0
©WILEY
9
И780470
03 24 80
|
any_adam_object | 1 |
author | Nafie, Laurence A. |
author_GND | (DE-588)173887880 |
author_facet | Nafie, Laurence A. |
author_role | aut |
author_sort | Nafie, Laurence A. |
author_variant | l a n la lan |
building | Verbundindex |
bvnumber | BV039934735 |
callnumber-first | Q - Science |
callnumber-label | QC454 |
callnumber-raw | QC454.V5 |
callnumber-search | QC454.V5 |
callnumber-sort | QC 3454 V5 |
callnumber-subject | QC - Physics |
classification_rvk | UM 3200 VE 8700 |
ctrlnum | (OCoLC)752226876 (DE-599)BVBBV039934735 |
dewey-full | 539.6 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 539 - Modern physics |
dewey-raw | 539.6 |
dewey-search | 539.6 |
dewey-sort | 3539.6 |
dewey-tens | 530 - Physics |
discipline | Chemie / Pharmazie Physik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02293nam a2200517zc 4500</leader><controlfield tag="001">BV039934735</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20140630 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">120305s2011 xxuad|| |||| 00||| eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">2011012255</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780470032480</subfield><subfield code="c">cloth</subfield><subfield code="9">978-0-470-03248-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781119976516</subfield><subfield code="c">oBook</subfield><subfield code="9">978-1-1199-7651-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)752226876</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV039934735</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-19</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC454.V5</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">539.6</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UM 3200</subfield><subfield code="0">(DE-625)145882:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">VE 8700</subfield><subfield code="0">(DE-625)147150:253</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Nafie, Laurence A.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)173887880</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Vibrational optical activity</subfield><subfield code="b">principles and applications</subfield><subfield code="c">Laurence A. Nafie</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Chichester</subfield><subfield code="b">Wiley</subfield><subfield code="c">2011</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XX, 378 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Vibrational spectra</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Molekulardynamik</subfield><subfield code="0">(DE-588)4170370-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Molekülspektroskopie</subfield><subfield code="0">(DE-588)4128850-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Schwingungsspektroskopie</subfield><subfield code="0">(DE-588)4128960-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Molekulardynamik</subfield><subfield code="0">(DE-588)4170370-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Schwingungsspektroskopie</subfield><subfield code="0">(DE-588)4128960-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Molekülspektroskopie</subfield><subfield code="0">(DE-588)4128850-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe, EPUB</subfield><subfield code="z">978-1-1199-7753-7</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe, MOBI</subfield><subfield code="z">978-1-1199-7754-4</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe, PDF</subfield><subfield code="z">978-1-1199-7650-9</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=024792920&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Klappentext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=024792920&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-024792920</subfield></datafield></record></collection> |
id | DE-604.BV039934735 |
illustrated | Illustrated |
indexdate | 2024-07-10T00:14:29Z |
institution | BVB |
isbn | 9780470032480 9781119976516 |
language | English |
lccn | 2011012255 |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-024792920 |
oclc_num | 752226876 |
open_access_boolean | |
owner | DE-703 DE-188 DE-19 DE-BY-UBM |
owner_facet | DE-703 DE-188 DE-19 DE-BY-UBM |
physical | XX, 378 S. Ill., graph. Darst. |
publishDate | 2011 |
publishDateSearch | 2011 |
publishDateSort | 2011 |
publisher | Wiley |
record_format | marc |
spelling | Nafie, Laurence A. Verfasser (DE-588)173887880 aut Vibrational optical activity principles and applications Laurence A. Nafie Chichester Wiley 2011 XX, 378 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Includes bibliographical references and index Vibrational spectra Molekulardynamik (DE-588)4170370-4 gnd rswk-swf Molekülspektroskopie (DE-588)4128850-6 gnd rswk-swf Schwingungsspektroskopie (DE-588)4128960-2 gnd rswk-swf Molekulardynamik (DE-588)4170370-4 s Schwingungsspektroskopie (DE-588)4128960-2 s DE-604 Molekülspektroskopie (DE-588)4128850-6 s Erscheint auch als Online-Ausgabe, EPUB 978-1-1199-7753-7 Erscheint auch als Online-Ausgabe, MOBI 978-1-1199-7754-4 Erscheint auch als Online-Ausgabe, PDF 978-1-1199-7650-9 Digitalisierung UB Bayreuth application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=024792920&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Klappentext Digitalisierung UB Bayreuth application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=024792920&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Nafie, Laurence A. Vibrational optical activity principles and applications Vibrational spectra Molekulardynamik (DE-588)4170370-4 gnd Molekülspektroskopie (DE-588)4128850-6 gnd Schwingungsspektroskopie (DE-588)4128960-2 gnd |
subject_GND | (DE-588)4170370-4 (DE-588)4128850-6 (DE-588)4128960-2 |
title | Vibrational optical activity principles and applications |
title_auth | Vibrational optical activity principles and applications |
title_exact_search | Vibrational optical activity principles and applications |
title_full | Vibrational optical activity principles and applications Laurence A. Nafie |
title_fullStr | Vibrational optical activity principles and applications Laurence A. Nafie |
title_full_unstemmed | Vibrational optical activity principles and applications Laurence A. Nafie |
title_short | Vibrational optical activity |
title_sort | vibrational optical activity principles and applications |
title_sub | principles and applications |
topic | Vibrational spectra Molekulardynamik (DE-588)4170370-4 gnd Molekülspektroskopie (DE-588)4128850-6 gnd Schwingungsspektroskopie (DE-588)4128960-2 gnd |
topic_facet | Vibrational spectra Molekulardynamik Molekülspektroskopie Schwingungsspektroskopie |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=024792920&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=024792920&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT nafielaurencea vibrationalopticalactivityprinciplesandapplications |