Foundations of materials science and engineering:
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Singapur [u.a.]
McGraw-Hill
2011
|
Ausgabe: | 5. ed. in SI Units |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | Literaturverz. S. 1035 - 137 |
Beschreibung: | XIX, 1070 S. Ill., graph. Darst. |
ISBN: | 9780071311144 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV039928889 | ||
003 | DE-604 | ||
005 | 20120803 | ||
007 | t | ||
008 | 120302s2011 ad|| |||| 00||| eng d | ||
020 | |a 9780071311144 |9 978-0-07-131114-4 | ||
035 | |a (OCoLC)785833389 | ||
035 | |a (DE-599)HBZHT016888294 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-703 |a DE-573 | ||
084 | |a UQ 8000 |0 (DE-625)146584: |2 rvk | ||
084 | |a ZM 3000 |0 (DE-625)157020: |2 rvk | ||
100 | 1 | |a Smith, William F. |d 1931- |e Verfasser |0 (DE-588)139031650 |4 aut | |
245 | 1 | 0 | |a Foundations of materials science and engineering |c William F. Smith ; Javad Hashemi |
250 | |a 5. ed. in SI Units | ||
264 | 1 | |a Singapur [u.a.] |b McGraw-Hill |c 2011 | |
300 | |a XIX, 1070 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
500 | |a Literaturverz. S. 1035 - 137 | ||
650 | 0 | 7 | |a Werkstoffkunde |0 (DE-588)4079184-1 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Werkstoffkunde |0 (DE-588)4079184-1 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Hashemi, Javad |e Verfasser |4 aut | |
856 | 4 | 2 | |m Digitalisierung UB Bayreuth |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=024787202&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-024787202 |
Datensatz im Suchindex
_version_ | 1804148892469559296 |
---|---|
adam_text | TABLE
OF
CONTENTS
Preface
xvii
CHAPTER
1
Introduction to Materials Science
and Engineering
2
1.1
Materials and Engineering
3
1.2
Materials Science and Engineering
6
1.3
Types of Materials
8
1.3.1
Metallic Materials
8
1.3.2
Polymeric Materials
10
1.3.3
Ceramic Materials
11
1.3.4
Composite Materials
13
1.3.5
Electronic Materials
14
1.4
Competition Among Materials
15
1.5
Recent Advances in Materials Science
and Technology and Future Trends
17
1.5.1
Smart Materials
17
1.5.2
Nanomaterials
19
1.6
Design and Selection
19
1.7
Summary
20
1.8
Definitions
21
1.9
Problems
22
CHAPTER
2
Atomic Structure and Bonding
24
2.1
2.2
2.3
vi
Atomic Structure and Subatomic
Particles
25
Atomic Numbers, Mass Numbers, and
Atomic Masses
28
2.2.1
Atomic Numbers and Mass Numbers
The Electronic Structure of Atoms
31
2.3.1
Planck s Quantum Theory and
Electromagnetic Radiation
31
2.3.2
Bohr s Theory of the Hydrogen Atom
2.3.3
The Uncertainty Principle and
Schrodinger s Wave Functions
37
28
34
2.3.4
Quantum Numbers, Energy Levels,
and Atomic
Orbitals 40
2.3.5
The Energy State of Multielectron
Atoms
43
2.3.6
The Quantum-Mechanical Model
and the Periodic Table
44
2.4
Periodic Variations in Atomic
Size, Ionization Energy, and Electron
Affinity
49
2.4.1
Trends in Atomic Size
49
2.4.2
Trends in Ionization Energy
49
2.4.3
Trends in Electron Affinity
52
2.4.4
Metals, Metalloids, and Nonmetals
52
2.5
Primary Bonds
54
2.5.1
Ionic Bonds
55
2.5.2
Covalent Bonds
61
2.5
J
Metallic Bonds
68
2.5.4
Mixed Bonding
70
2.6
Secondary Bonds
71
2.7
Summary
74
2.8
Definitions
75
2.9
Problems
77
CHAPTER
3
Crystal and Amorphous Structure
in Materials
84
3.1
The Space Lattice and Unit Cells
85
3.2
Crystal Systems and
Bravais
Lattices
86
3.3
Principal Metallic Crystal Structures
87
3.3.1
Body-Centered Cubic (BCC) Crystal
Structure
89
3.3.2
Face-Centered Cubic (FCC) Crystal
Structure
92
3.33
Hexagonal Close-Packed (HCP) Crystal
Structure
93
3.4
Atom Positions in Cubic Unit Cells
95
3.5
Directions in Cubic Unit Cells
96
Table
of Contents
vii
3.6
Miller Indices for Crystallographic Planes
in Cubic Unit Cells
100
3.7
Crystallographic Planes and Directions in
Hexagonal Crystal Structure
105
3.7.1
Indices for Crystal Planes in HCP Unit
Cells
105
3.7.2
Direction Indices in HCP Unit Cells
106
3.8
Comparison of FCC, HCP, and BCC Crystal
Structures
108
3.8.1
FCC ami HCP Crystal Structures
108
3.8.2
BCC Crystal Structure
110
3.9
Volume, Planar, and Linear Density
Unit-Cell Calculations
110
3.9.1
Volume Density
1/0
3.9.2
Planar Atomic Density 1
1
1
3.9.3
Linear Atomic Density
113
3.10
Polymorphism or Allotropy
114
3.11
Crystal Structure Analysis
115
3.11.1
Х
-Ray Sources
116
3.11.2
Х
-Ray Diffraction
117
3.11.3
Х
-Ray Diffraction Analysis of Crystal
Structures
119
3.12
Amorphous Materials
125
3.13
Summary
126
3.14
Definitions
127
3.15
Problems
128
CHAPTER
4
Solidification and Crystalline
Imperfections
136
4.1
Solidification of Metals
137
4.1.1
The Formation of
Stahle
Nuclei in Liquid
Metals
139
4.1.2
Growth of Crystals in Liquid Metal and
Formation of a Grain Structure
144
4.1.3
Grain Structure of Industrial
Castings
145
4.2
Solidification of Single Crystals
146
4.3
Metallic Solid Solutions
150
4.3.1
Substitutional Solid Solutions
151
4.3.2
Interstitial Solid Solutions
153
4.4
Crystalline Imperfections
155
4.4.1
Point Defects
155
4.4.2
Line Defects (Dislocations)
156
4.4.3
Planar Defects
159
4.4.4
Volume Defects
162
4.5
Experimental Techniques for Identification
of
Microstructure
and Defects
163
4.5.1
Optical Metallography,
ASTM
Grain Size,
and Grain Diameter Determination
163
4.5.2
Scanning Electron Microscopy
(SEM) I6H
4.5.3
Transmission Electron Microscopy
(ТЕМ)
169
4.5.4
High-Resolution Transmission Electron
Microscopy (HRTEM)
170
4.5.5
Scanning Probe Microscopes and Atomic
Resolution
173
4.6
Summary
176
4.7
Definitions
177
4.8
Problems
178
CHAPTER
5
Thermally Activated Processes and
Diffusion in Solids
186
5.1
Rate Processes in Solids
187
5.2
Atomic Diffusion in Solids
191
5.2.1
Diffusion in Solids in General
191
5.2.2
Diffusion Mechanisms
191
5.2.3
Steady-State Diffusion
193
5.2.4
Non-Steady-State Diffusion
196
5.3
Industrial Applications of Diffusion
Processes
198
5.3.1
Case Hardening of Steel by Gas
Carburizing
198
5.3.2
Impurity Diffusion into Silicon Wafers
for Integrated Circuits
202
5.4
Effect of Temperature on Diffusion
in Solids
204
5.5
Summary
208
5.6
Definitions
208
5.7
Problems
209
viii
Table of
Contents
CHAPTER
6
Mechanical Properties
of Metals I
214
6.1
The Processing of Metals and Alloys
215
6.1.1
The Casting of Metals and Alloys
215
6.1.2
Hot and Cold Rolling of Metals
and Alloys
217
6.1.3
Extrusion of Metals and Alloys
221
6.1.4
Forging
222
6.1.5
Other Metal-Forming Processes
224
6.2
Stress and Strain in Metals
225
6.2.1
Elastic and Plastic Deformation
225
6.2.2
Engineering Stress and Engineering
Strain
226
6.2.3
Poisson s
Ratio
228
6.2A Shear Stress and Shear Strain
228
6.3
The Tensile Test and the Engineering
Stress-Strain Diagram
230
6.3.1
Mechanical Property Data Obtained from
the Tensile Test and the Engineering
Stress-Strain Diagram
232
6.3.2
Comparison of Engineering Stress-Strain
Curves for Selected Alloys
237
6.3.3
True Stress and True Strain
237
6.4
Hardness and Hardness Testing
239
6.5
Plastic Deformation of Metal Single
Crystals
240
6.5.1
Slipbands
and Slip Lines on the Surface
of Metal Crystals
240
6.5.2
Plastic Deformation in Metal Crystals by
the Slip Mechanism
242
6.5.3
Slip Systems
244
6.5.4
Critical Resolved Shear Stress for Metal
Single Crystals
249
6.5.5
Schmid
s
Law
250
6.5.6
Twinning
252
6.6
Plastic Deformation of Polycrystalline
Metals
254
6.6.1
Effect of Grain Boundaries on the Strength
of Metals
254
6.6.2
Effect of Plastic Deformation on
Grain Shape and Dislocation
Arrangements
256
6.6.3
Effect of Cold Plastic Deformation on
Increasing the Strength of Metals
258
6.7
Solid-Solution Strengthening
of Metals
259
6.8
Recovery and Recrystallization of
Plastically Deformed Metals
261
6.8.1
Structure of a Heavily Cold-Worked Metal
before Reheating
262
6.8.2
Recovery
263
6.8.3
Recrystallization
264
6.9
Superplasticity in Metals
268
6.10
Nanocrystalline Metals
270
6.11
Summary
271
6.12
Definitions
272
6.13
Problems
273
CHAPTER
7
Mechanical Properties
of Metals II
282
7.1
Fracture of Metals
283
7.1.1
Ductile Fracture
284
7.1.2
Brittle Fracture
285
7.1.3
Toughness and Impact Testing
288
7.1.4
Ductile to Brittle Transition
Temperature
288
7.1.5
Fracture Toughness
291
7.2
Fatigue of Metals
293
7.2.1
Cyclic Stresses
297
7.2.2
Basic Structural Changes that Occur in a
Ductile Metal in the Fatigue Process
298
7.2.3
Some Major Factors that Affect the
Fatigue Strength of a Metal
299
7.3
Fatigue Crack Propagation Rate
300
7.3.1
Correlation of Fatigue Crack Propagation
with Stress and Crack Length
300
7.3.2
Fatigue Crack Growth Rate versus Stress-
Intensity Factor Range Plots
302
7.3.3
Fatigue Life Calculations
304
7.4
Creep and Stress Rupture of Metals
306
7.4.1
Creep of Metals
306
Table
of Contents
■χ
7.4.2
The Creep Test
308
7.4.3
Creep-Rupture Test
309
7.5
Graphical Representation of Creep- and
Stress-Rupture Time-Temperature Data
Using the Larsen-Miller Parameter
310
7.6
A Case Study in Failure of Metallic
Components
312
7.7
Recent Advances and Future Directions in
Improving the Mechanical Performance of
Metals
315
7.7.1
Improving Ductility and
Strengt!]
Simultaneously
315
7.7.2
Fatigue Behavior in Nanocrystalline
Metals
317
7.8
Summary
317
7.9
Definitions
318
7.10
Problems
319
CHAPTER
8
Phase Diagrams
324
8.1
Phase Diagrams of Pure Substances
325
8.2
Gibbs Phase Rule
327
8.3
Cooling Curves
328
8.4
Binary Isomorphous Alloy Systems
329
8.5
The Lever Rule
332
8.6
Nonequilibrium Solidification
of Alloys
336
8.7
Binary Eutectic Alloy Systems
339
8.8
Binary Peritectic Alloy Systems
347
8.9
Binary Monotectic Systems
352
8.10
Invariant Reactions
353
8.11
Phase Diagrams with Intermediate Phases
and Compounds
355
8.12
Ternary Phase Diagrams
359
8.13
Summary
362
8.14
Definitions
363
8.15
Problems
365
CHAPTER
9
Engineering Alloys
374
9.1
Production of Iron and Steel
376
9.1.1
Production of Pig Iron in a Blast
Furnace
376
9.1.2
Steelmaking and Processing of Major
Steel Product Forms
377
9.2
The Iron-Carbon System
379
9.2.1
The Iron-Iron-Carbide Phase
Diagram
379
9.2.2
Solid Phases in the Fe-Fe ,C Phase
Diagram
379
9.2.3
Invariant Reactions in the Fe-Fe ¡C Phase
Diagram
380
9.2.4
Slow Cooling of Plain-Carbon
Steels
382
9.3
Heat Treatment of Plain-Carbon
Steels
389
9.3.1
Martensite
389
9.3.2
Isothermal Decomposition
ofAustenite
394
9.3.3
Continuous-Cooling Transformation
Diagram for a Eutectoid Plain-Carbon
Steel
399
9.3.4
Annealing and Normalizing of
Plain-Carbon Steels
402
9.3.5
Tempering of Plain-Carbon Steels
403
9.3.6
Classification of Plain-Carbon Steels
and Typical Mechanical Properties
407
9.4
Low-Alloy Steels
408
9.4.1
Classification of Alloy Steels
408
9.4.2
Distribution of Alloying Elements in Allox
Steels
410
9.4.3
Effects of Alloying Elements on the
Eutectoid Temperature of Steels
411
9.4.4
Hardenability
412
9.4.5
Typical Mechanical Properties and
Applications for Low-Alloy Steels
417
9.5
Aluminum Alloys
417
9.5.1
Precipitation Strengthening
(Hardening)
419
Table
of Contents
9.5.2
General Properties of Aluminum and Its
Production
426
9.5.3
Wrought Aluminum Alloys
427
9.5.4
Aluminum Casting Alloys
432
9.6
Copper Alloys
434
9.6.1
General Properties of Copper
434
9.6.2
Production of Copper
434
9.6.3
Classification of Copper Alloys
435
9.6.4
Wrought Copper Alloys
435
9.7
Stainless Steels
440
9.7.1
Ferrine
Stainless Steels
440
9.7.2
Martensitic Stainless Steels
440
9.7.3
Austenitic Stainless Steels
443
9.8
Cast Irons
444
9.8.1
General Properties
444
9.8.2
Types of Cast Irons
445
9.8.3
White Cast Iron
445
9.8.4
Gray Cast Iron
447
9.8.5
Ductile Cast Irons
448
9.8.6
Malleable Cast Irons
451
9.9
Magnesium, Titanium, and Nickel
Alloys
452
9.9.1
Magnesium Alloys
452
9.9.2
Titanium Alloys
454
9.9.3
Nickel Alloys
456
9.10
Special-Purpose Alloys
and Applications
457
9.10.1
Intermetallics
457
9.10.2
Shape-Memory Alloys
458
9.10.3
Amorphous Metals
462
9.11
Summary
464
9.12
Definitions
465
9.13
Problems
467
CHAPTER
10
Polymeric Materials
476
10.1
Introduction
477
10.1.1
Thermoplastics
478
10.1.2
Thermosetting Plastics
(Thermosets)
478
10.2
Polymerization Reactions
479
10.2.1
Covalent Bonding Structure of an
Ethylene
Molecule
479
10.2.2
Covalent Bonding Structure of an
Activated
Ethylene
Molecule
480
10.23
General Reaction for the Polymerization
of Polyethylene and the Degree of
Polymerization
481
10.2.4
Chain Polymerization Steps
481
10.2.5
Average Molecular Weight for
Thermoplastics
483
10.2.6
Functionality of a Monomer
484
10.2.7
Structure of Nonery
stalline
Linear
Polymers
484
10.2.8
Vinyl and Vinylidene Polymers
486
10.2.9
Homopolymers and Copolymers
487
10.2.10
Other Methods of Polymerization
490
10.3
Industrial Polymerization Methods
492
10.4
Crystallinity and Stereoisomerism in Some
Thermoplastics
494
10.4.1
Solidification of Noncry
stalline
Thermoplastics
494
10.4.2
Solidification of Partly Crystalline
Thermoplastics
494
10.4.3
Structure of Partly Crystalline
Thermoplastic Materials
496
10.4.4
Stereoisomerism in Thermoplastics
497
10.4.5
Ziegler and
Natta
Catalysts
498
10.5
Processing of Plastic Materials
499
10.5.1
Processes Used for Thermoplastic
Materials
500
10.5.2
Processes Used for Thermosetting
Materials
504
10.6
General-Purpose Thermoplastics
506
10.6.1
Polyethylene
508
10.6.2
Polyvinyl Chloride and Copolymers
511
10.6.3
Polypropylene
513
10.6.4
Polystyrene
513
10.6.5
Polyacrylonitrile
514
10.6.6
Styrene-Acrylonitrile (SAN)
515
10.6.7 ABS 515
10.6.8
Polymethyl Methacrylate (PMMA)
517
10.6.9
Fluoroplastics
518
Table
of Contents
xi
10.7
Engineering Thermoplastics
519
10.7.1
Polyamides
(Nylons)
520
10.7.2
Polycarbonate
523
10.7.3
Phenylene Oxide-Based Resins
524
10.7.4
Acetáis
525
10.7.5
Thermoplastic Polyesters
526
10.7.6
Poly phenylene
Sulfide
527
10.7.7
Polyetherimide
528
10.7.8
Polymer Alloys
528
10.8
Thermosetting Plastics
(Thermosets)
529
10.8.1
Phenolics
531
10.8.2
Epoxy Resins
532
10.8.3
Unsaturated Polyesters
534
10.8.4
Amino
Resins (Ureas and
Melamines)
535
10.9
Elastomers (Rubbers)
537
10.9.1
Natural Rubber
537
10.9.2
Synthetic Rubbers
541
10.9.3
Properties of Polychloroprene
Elastomers
542
10.9.4
Vulcanization of Polychloroprene
Elastomers
543
10.10
Deformation and Strengthening of Plastic
Materials
545
10.10.1
Deformation Mechanisms for
Thermoplastics
545
10.10.2
Strengthening of Thermoplastics
547
10.10.3
Strengthening of Thermosetting
Plastics
550
10.10.4
Effect of Temperature on the Strength
of Plastic Materials
551
10.11
Creep and Fracture of Polymeric
Materials
552
10.11.1
Creep of Polymeric Materials
552
10.11.2
Stress Relaxation of Polymeric
Materials
554
10.11.3
Fracture of Polymeric Materials
555
10.12
Summary
558
10.13
Definitions
559
10.14
Problems
562
CHAPTER
11
Ceramics
572
11.1
Introduction
573
11.2
Simple Ceramic Crystal Structures
575
11.2.1
Ionic and Covalent Bonding in Simple
Ceramic Compounds
575
11.2.2
Simple Ionic Arrangements Found in
lonically Bonded Solids
576
11.2.3
Cesium Chloride (CsCl) Crystal
Structure
579
11.2.4
Sodium Chloride (NaCl) Crystal
Structure
580
11.2.5
Interstitial Sites in FCC and HCP Crystal
Lattices
584
11.2.6
Zinc Blende (ZnS) Crystal Structure
586
11.2.7
Calcium Fluoride (CaF2) Crystal
Structure
588
11.2.8
Antifluorite
Crystal Structure
590
11.2.9
Corundum (A12O,) Crystal
Structure
590
11.2.10
Spinel (MgAl2O4) Crystal
Structure
590
11.2.11
Perovskite (CaTiO^) Crystal
Structure
590
11.2.12
Carbon and Its Allotropes
591
11.3
Silicate Structures
595
11.3.1
Basic Structural Unit of the Silicate
Structures
595
11.3.2
island. Chain, and Ring Structures of
Silicates
595
11.3.3
Sheet Structures of Silicates
595
11.3.4
Silicate Networks
597
11.4
Processing of Ceramics
598
11.4.1
Materials Preparation
599
11.4.2
Forming
599
11.4.3
Thermal Treatments
604
11.5
Traditional and Engineering Ceramics
606
11.5.1
Traditional Ceramics
606
11.5.2
Engineering Ceramics
609
11.6
Mechanical Properties of Ceramics
611
11.6.1
General
611
11.6.2
Mechanisms for the Deformation of
Ceramic Materials
611
XII
Table of
Contents
11.6.3
Factors
Affecting the Strength of Ceramic
Materials
612
11.6.4
Toughness of Ceramic Materials
613
11.6.5
Transformation Toughening of Partially
Stabilized Zirconia (PSZ)
615
11.6.6
Fatigue Failure of Ceramics
615
11.6.7
Ceramic Abrasive Materials
617
11.7
Thermal Properties of Ceramics
618
11.7.1
Ceramic Refractory Materials
619
11.7.2
Acidic Refractories
620
11.7.3
Basic Refractories
620
11.7.4
Ceramic Tile Insulation for the Space
Shuttle Orbiter
620
11.8
Glasses
620
11.8.1
Definition of a Glass
622
11.8.2
Glass Transition Temperature
622
11.8.3
Structure of Glasses
623
11.8.4
Compositions of Glasses
624
11.8.5
Viscous Deformation of Glasses
626
11.8.6
Forming Methods for Glasses
628
11.8.7
Tempered Glass
630
11.8.8
Chemically Strengthened Glass
630
11.9
Ceramic Coatings and Surface
Engineering
632
11.9.1
Silicate Glasses
632
11.9.2
Oxides and Carbides
632
11.10
Nanotechnology and Ceramics
633
11.11
Summary
635
11.12
Definitions
636
11.13
Problems
637
CHAPTER
12
Composite Materials
644
12.1
Introduction
645
12.2
Fibers for Reinforced-Plastic Composite
Materials
646
12.2.1
Glass Fibers for Reinforcing Plastic
Resins
646
12.2.2
Carbon Fibers for Reinforced
Plastics
649
12.2.3
Aramid
Fibers for Reinforcing Plastic
Resins
651
12.2.4
Comparison of Mechanical Properties
of Carbon,
Aramid,
and Glass Fibers
for Reinforced-Plastic Composite
Materials
651
12.3
Fiber-Reinforced-Plastic Composite
Materials
653
12.3.1
Matrix Materials for Fiber-
Reinforced-Plastic Composite
Materials
653
12.3.2
Fiber-Reinforced-Plastic Composite
Materials
654
12.3.3
Equations for Elastic Modulus of a
Lamellar Continuous-Fiber-Plastic
Matrix Composite for Isostrain and
Isostress
Conditions
658
12.4
Open-Mold Processes for Fiber-
Reinforced-Plastic Composite
Materials
663
12.4.1
Hand Lay-Up Process
663
12.4.2
Spray-Up Process
663
12.4.3
Vacuum Bag-Autoclave Process
664
12.4.4
Filament-Winding Process
665
12.5
Closed-Mold Processes for Fiber-
Reinforced-Plastic Composite
Materials
666
12.5.1
Compression and Injection Molding
666
12.5.2
The Sheet-Molding Compound (SMC)
Process
667
12.5.3
Continuous-Pultrusion Process
668
12.6
Concrete
668
12.6.1
Portland Cement
669
12.6.2
Mixing Water for Concrete
672
12.6.3
Aggregates for Concrete
673
12.6.4
Air Entrainment
673
12.6.5
Compressive
Strength of Concrete
674
12.6.6
Proportioning of Concrete Mixtures
674
12.6.7
Reinforced and Prestressed Concrete
675
12.6.8
Prestressed Concrete
676
12.7
Asphalt and Asphalt Mixes
678
Table
of Contents
12.8
Wood
680
12.8.1
MacrostructureofWood
680
12.8.2
Microstructure of Softwoods
683
12.8.3
Microstructure of Hardwoods
684
12.8.4
Cell-Wall
Ultrastructure
685
12.8.5
Properties of Wood
687
12.9
Sandwich Structures
688
12.9.1
Honeycomb Sandwich Structure
690
12.9.2
Clodded Metal Structures
690
12.10
Metal-Matrix and Ceramic-Matrix
Composites
691
12.10.1
Metal-Matrix Composites
(MMCs)
691
12.10.2
Ceramic-Matrix Composites
(CMCs)
693
12.10.3
Ceramic Composites and
Nanotechnology
698
12.11
Summary
698
12.12
Definitions
699
12.13
Problems
702
CHAPTER
13
Corrosion
708
13.1
General
709
13.2
Electrochemical Corrosion of Metals
710
13.2.1
Oxidation-Reduction Reactions
710
13.2.2
Standard Electrode Half-Cell Potentials
for Metals
712
13.3
Galvanic Cells
714
13.3.1
Macroscopic Galvanic Cells with
Electrolytes That Are One Molar
714
13.3.2
Galvanic Cells with Electrolytes That Are
Not One Molar
716
13.3.3
Galvanic Cells with Acid or Alkaline
Electrolytes with No Metal Ions
Present
717
13.3.4
Microscopic Galvanic Cell Corrosion of
Single Electrodes
719
13.3.5
Concentration Galvanic Cells
720
13.3.6
Galvanic Cells Created by Differences in
Composition, Structure, and Stress
723
13.4
Corrosion Rates (Kinetics)
725
13.4.1
Rate of Uniform Corrosion or
Electroplating of a Metal in an Aqueous
Solution
726
13.4.2
Corrosion Reactions and
Polarization
729
13.4.3
Passivation
732
13.4.4
The Galvanic Series
733
13.5
Types of Corrosion
735
13.5.1
Uniform or General Attack
Corrosion
735
13.5.2
Galvanic or Two-Metal Corrosion
735
13.5.3
Pitting Corrosion
736
13.5.4
Crevice Corrosion
739
13.5.5
Intergranular Corrosion
741
13.5.6
Stress Corrosion
743
13.5.7
Erosion Corrosion
746
13.5.8
Cavitation Damage
746
13.5.9
Fretting Corrosion
747
13.5.10
Selective Leaching
747
13.5.11
Hydrogen Damage
748
13.6
Oxidation of Metals
749
13.6.1
Protective Oxide Films
749
13.6.2
Mechanisms of Oxidation
751
13.6.3
Oxidation Rates (Kinetics)
752
13.7
Corrosion Control
754
13.7.1
Materials Selection
754
13.7.2
Coatings
755
13.7.3
Design
756
13.7.4 Alteration
of Environment
757
13.7.5
Cathodic and Anodic Protection
758
13.8
Summary
760
13.9
Definitions
760
13.10
Problems
761
CHAPTER
14
Electrical Properties
of Materials
768
14.1
Electrical Conduction in Metals
769
14.1.1
The Classic Model for Electrical
Conduction in Metals
769
xiv
Table
of Contents
14.1.2
Ohm s Law
771
14.1.3
Drift Velocity of Electrons in a
Conducting Metal
775
14.1.4
Electrical Resistivity of Metals
776
14.2
Energy-Band Model For Electrical
Conduction
780
14.2.1
Energy-Band Model for Metals
780
14.2.2
Energy-Band Model for Insulators
782
14.3
Intrinsic Semiconductors
782
14.3.1
The Mechanism of Electrical Conduction
in Intrinsic Semiconductors
782
14.3.2
Electrical Charge Transport in the
Crystal Lattice of Pure Silicon
783
14.3.3
Energy-Band Diagram for Intrinsic
Elemental Semiconductors
784
14.3.4
Quantitative Relationships for Electrical
Conduction in Elemental Intrinsic
Semiconductors
785
14.3.5
Effect of Temperature on Intrinsic
Semiconductivity
787
14.4
Extrinsic Semiconductors
789
14.4.1
п
-Type
(Negative-Type) Extrinsic
Semiconductors
789
14.4.2
p
-Туре
(Positive-Type) Extrinsic
Semiconductors
791
14.4.3
Doping of Extrinsic Silicon
Semiconductor Material
793
14.4.4
Effect of Doping on Carrier
Concentrations in Extrinsic
Semiconductors
793
14.4.5
Effect of Total Ionized Impurity
Concentration on the Mobility of
Charge Carriers in Silicon at Room
Temperature
796
14.4.6
Effect of Temperature on the Electrical
Conductivity of Extrinsic
Semiconductors
797
14.5
Semiconductor Devices
799
14.5.1
The pn Junction
800
14.5.2
Some Applications for pn Junction
Diodes
803
14.53
The Bipolar Junction Transistor
804
14.6
Microelectronics
806
14.6.1
Microelectronic Planar Bipolar
Transistors
806
14.6.2
Microelectronic Planar Field-Effect
Transistors
807
14.6.3
Fabrication of Microelectronic Integrated
Circuits
810
14.7
Compound Semiconductors
817
14.8
Electrical Properties of Ceramics
820
14.8.1
Basic Properties of Dielectrics
820
14.8.2
Ceramic Insulator Materials
822
14.8.3
Ceramic Materials for Capacitors
823
14.8.4
Ceramic Semiconductors
824
14.8.5
Ferroelectric Ceramics
826
14.9
Nanoelectronics
829
14.10
Summary
830
14.11
Definitions
831
14.12
Problems
834
CHAPTER
15
Optical Properties and
Superconductive Material
840
15.1
Introduction
841
15.2
Light and the Electromagnetic
Spectrum
841
15.3
Refraction of Light
843
15.3.1
Index of Refraction
843
15.3.2
Snelľs
Law of Light Refraction
845
15.4
Absorption, Transmission, and Reflection of
Light
846
15.4.1
Metals
846
15.4.2
Silicate Glasses
847
15.4.3
Plastics
848
15.4.4
Semiconductors
850
15.5
Luminescence
851
15.5.1
Photoluminescence
852
15.5.2
Cathodoluminescence
852
15.6
Stimulated Emission of Radiation and
Lasers
854
15.6.1
Types of Lasers
856
Table
of Contents
XV
15.7
Optical Fibers
858
15.7.1
Light Loss in Optical Fibers
858
15.7.2
Single-Mode and Multimode Optical
Fibers
859
15.7.3
Fabrication of Optical Fibers
860
15.7.4
Modern Optical-Fiber Communication
Systems
862
15.8
Superconducting Materials
863
15.8.1
The Superconducting State
863
15.8.2
Magnetic Properties of
Superconductors
864
15.8.3
Current Flow and Magnetic Fields in
Superconductors
866
15.8.4
High-Current, High-Field
Superconductors
867
15.8.5
High Critical Temperature (Tt.)
Superconducting Oxides
869
15.9
Definitions
871
15.10
Problems
872
CHAPTER
16
Magnetic Properties
876
16.1
Introduction
877
16.2
Magnetic Fields and Quantities
877
16.2.1
Magnetic Fields
877
16.2.2
Magnetic Induction
880
16.2.3
Magnetic Permeability
880
16.2.4
Magnetic Susceptibility
882
16.3
Types of Magnetism
882
16.3.1
Diamagnetism
883
16.3.2
Paramagnetism
883
16.3.3
Ferromagnetism
883
16.3.4
Magnetic Moment of a Single Unpaired
Atomic Electron
885
16.3.5
Antiferromagnetism
887
16.3.6
Ferrimagnetism
887
16.4
Effect of Temperature on
Ferromagnetism
887
16.5
Ferromagnetic Domains
888
16.6
Types of Energies that Determine the
Structure of Ferromagnetic Domains
890
16.6.1
Exchange Energy
890
16.6.2
Magnetostatic Energy
891
16.6.3
Magnetocry
stalline
Anisotropy
Energy
891
16.6.4
Domain Wall Energy
892
16.6.5
Magnetostrictive
Energy
893
16.7
The Magnetization and Demagnetization of
a Ferromagnetic Metal
895
16.8
Soft Magnetic Materials
896
16.8.1
Desirable Properties for Soft Magnetic
Materials
897
16.8.2
Energy Losses for Soft Magnetic
Materials
897
16.8.3
Iron-Silicon Alloys
898
16.8.4
Metallic Glasses
899
16.8.5
Nickel-Iron Alloys
900
16.9
Hard Magnetic Materials
903
16.9.1
Properties of Hard Magnetic
Materials
903
16.9.2
Alnico Alloys
905
16.9.3
Rare Earth Alloys
907
16.9.4
Neodymium-Iron-Boron Magnetic
Alloys
909
16.9.5
Iron-Chromium-Cobalt Magnetic
Alloys
909
16.10
Ferrites
911
16.10.1
Magnetically Soft
Ferrites
911
16.10.2
Magnetically Hard
Ferrites
915
16.11
Summary
915
16.12
Definitions
916
16.13
Problems
919
CHAPTER
17
Biological Materials and
Biomaterials
924
17.1
Introduction
925
17.2
Biological Materials: Bone
17.2.1
Composition
926
926
xvi
Table
of Contents
17.2.2
Macrostructure
926
17.2.3
Mechanical Properties
926
17.2.4
Biomechanics of Bone Fracture
929
17.2.5
Viscoelasticity of Bone
929
17.2.6
Bone Remodeling
930
17.2.7
A Composite Model of Bone
930
17.3
Biological Materials: Tendons and
Ligaments
932
17.3.1
Macrostructure and Composition
932
17.3.2
Microstriicture
932
17.3.3
Mechanical Properties
934
17.3.4
Structure-Property Relationship
935
17.3.5
Constitutive Modeling and
Viscoelasticity
936
17.3.6
Ligament and Tendon Injury
938
17.4
Biological Material: Articular
Cartilage
940
17.4.1
Composition and Macrostructure
940
17.4.2
Microstructure
941
17.4.3
Mechanical Properties
941
Π
.4.4
Cartilage Degeneration
942
17.5
Biomaterials:
Metals in
Biomedical
Applications
942
17.5.1
Stainless Steels
944
17.5.2
Cobalt-Based Alloys
944
17.5.3
Titanium Alloys
945
17.5.4
Some Issues in Orthopedic Application
of Metals
947
17.6
Polymers in
Biomedical
Applications
949
17.6.1
Cardiovascular Applications
of Polymers
949
17.6.2
Ophthalmic Applications
950
17.6.3
Drug
Deliren·
Systems
952
17.6.4
Suture Materials
952
17.6.5
Orthopedic Applications
952
Π.7
Ceramics in
Biomedical
Applications
953
17.7.1
Alumina in Orthopedic Implants
954
17.7.2
Alumina in Dental Implants
955
17.7.3
Ceramic Implants and Tissue
Connectivity
956
17.7.4
Nanocrystalline Ceramics
957
17.8
Composites in
Biomedical
Applications
958
17.8.1
Orthopedic Applications
958
17.8.2
Applications in Dentistry
959
17.9
Corrosion in
Biomaterials
960
17.10
Wear in
Biomedical
Implants
961
17.11
Tissue Engineering
965
17.12
Summary
966
17.13
Definitions
967
17.14
Problems
968
APPENDIX I
Important Properties of
Selected Engineering Materials
973
APPENDIX II
Some Properties of
Selected Elements
1028
APPENDIX III
Ionic Radii of the Elements
1030
APPENDIX IV
Selected Physical Quantities
and Their Units
1033
References for Further Study by
Chapter
1035
Glossary
1038
Answers
1050
Index
1054
|
any_adam_object | 1 |
author | Smith, William F. 1931- Hashemi, Javad |
author_GND | (DE-588)139031650 |
author_facet | Smith, William F. 1931- Hashemi, Javad |
author_role | aut aut |
author_sort | Smith, William F. 1931- |
author_variant | w f s wf wfs j h jh |
building | Verbundindex |
bvnumber | BV039928889 |
classification_rvk | UQ 8000 ZM 3000 |
ctrlnum | (OCoLC)785833389 (DE-599)HBZHT016888294 |
discipline | Physik Werkstoffwissenschaften / Fertigungstechnik |
edition | 5. ed. in SI Units |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01406nam a2200361 c 4500</leader><controlfield tag="001">BV039928889</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20120803 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">120302s2011 ad|| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780071311144</subfield><subfield code="9">978-0-07-131114-4</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)785833389</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)HBZHT016888294</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-573</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UQ 8000</subfield><subfield code="0">(DE-625)146584:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZM 3000</subfield><subfield code="0">(DE-625)157020:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Smith, William F.</subfield><subfield code="d">1931-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)139031650</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Foundations of materials science and engineering</subfield><subfield code="c">William F. Smith ; Javad Hashemi</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">5. ed. in SI Units</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapur [u.a.]</subfield><subfield code="b">McGraw-Hill</subfield><subfield code="c">2011</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIX, 1070 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Literaturverz. S. 1035 - 137</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Werkstoffkunde</subfield><subfield code="0">(DE-588)4079184-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Werkstoffkunde</subfield><subfield code="0">(DE-588)4079184-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hashemi, Javad</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=024787202&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-024787202</subfield></datafield></record></collection> |
id | DE-604.BV039928889 |
illustrated | Illustrated |
indexdate | 2024-07-10T00:14:21Z |
institution | BVB |
isbn | 9780071311144 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-024787202 |
oclc_num | 785833389 |
open_access_boolean | |
owner | DE-703 DE-573 |
owner_facet | DE-703 DE-573 |
physical | XIX, 1070 S. Ill., graph. Darst. |
publishDate | 2011 |
publishDateSearch | 2011 |
publishDateSort | 2011 |
publisher | McGraw-Hill |
record_format | marc |
spelling | Smith, William F. 1931- Verfasser (DE-588)139031650 aut Foundations of materials science and engineering William F. Smith ; Javad Hashemi 5. ed. in SI Units Singapur [u.a.] McGraw-Hill 2011 XIX, 1070 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Literaturverz. S. 1035 - 137 Werkstoffkunde (DE-588)4079184-1 gnd rswk-swf Werkstoffkunde (DE-588)4079184-1 s DE-604 Hashemi, Javad Verfasser aut Digitalisierung UB Bayreuth application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=024787202&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Smith, William F. 1931- Hashemi, Javad Foundations of materials science and engineering Werkstoffkunde (DE-588)4079184-1 gnd |
subject_GND | (DE-588)4079184-1 |
title | Foundations of materials science and engineering |
title_auth | Foundations of materials science and engineering |
title_exact_search | Foundations of materials science and engineering |
title_full | Foundations of materials science and engineering William F. Smith ; Javad Hashemi |
title_fullStr | Foundations of materials science and engineering William F. Smith ; Javad Hashemi |
title_full_unstemmed | Foundations of materials science and engineering William F. Smith ; Javad Hashemi |
title_short | Foundations of materials science and engineering |
title_sort | foundations of materials science and engineering |
topic | Werkstoffkunde (DE-588)4079184-1 gnd |
topic_facet | Werkstoffkunde |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=024787202&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT smithwilliamf foundationsofmaterialsscienceandengineering AT hashemijavad foundationsofmaterialsscienceandengineering |