Cellular physiology and neurophysiology:
Gespeichert in:
Weitere Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Philadelphia, Pa.
Elsevier, Mosby
2012
|
Ausgabe: | 2. ed. |
Schriftenreihe: | Mosby's physiology monograph series
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | Includes Internet access. - 1. Aufl. u.d.T.: Blaustein, Mordecai P.: Cellular physiology |
Beschreibung: | XX, 337 S. zahlr. Ill., graph. Darst. 24 cm |
ISBN: | 9780323057097 0323057098 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV039912334 | ||
003 | DE-604 | ||
005 | 20130319 | ||
007 | t | ||
008 | 120224s2012 ad|| |||| 00||| eng d | ||
020 | |a 9780323057097 |c (pbk.) £27.99 |9 978-0-323-05709-7 | ||
020 | |a 0323057098 |c (pbk.) £27.99 |9 0-323-05709-8 | ||
035 | |a (OCoLC)793509344 | ||
035 | |a (DE-599)OBVAC08900939 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-578 |a DE-355 | ||
082 | 0 | |a 571.6 | |
084 | |a WE 2200 |0 (DE-625)148266: |2 rvk | ||
084 | |a WW 2200 |0 (DE-625)158906:13423 |2 rvk | ||
084 | |a QU 375 |2 nlm | ||
245 | 1 | 0 | |a Cellular physiology and neurophysiology |c ed. by Mordecai P. Blaustein ... |
250 | |a 2. ed. | ||
264 | 1 | |a Philadelphia, Pa. |b Elsevier, Mosby |c 2012 | |
300 | |a XX, 337 S. |b zahlr. Ill., graph. Darst. |c 24 cm | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Mosby's physiology monograph series | |
500 | |a Includes Internet access. - 1. Aufl. u.d.T.: Blaustein, Mordecai P.: Cellular physiology | ||
650 | 0 | 7 | |a Nervenzelle |0 (DE-588)4041649-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Zelle |0 (DE-588)4067537-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Neurophysiologie |0 (DE-588)4041897-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Physiologie |0 (DE-588)4045981-0 |2 gnd |9 rswk-swf |
653 | |a Cell physiology. | ||
653 | |a Neurophysiology. | ||
689 | 0 | 0 | |a Zelle |0 (DE-588)4067537-3 |D s |
689 | 0 | 1 | |a Physiologie |0 (DE-588)4045981-0 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Neurophysiologie |0 (DE-588)4041897-2 |D s |
689 | 1 | 1 | |a Nervenzelle |0 (DE-588)4041649-5 |D s |
689 | 1 | |C b |5 DE-604 | |
700 | 1 | |a Blaustein, Mordecai P. |4 edt | |
856 | 4 | 2 | |m Digitalisierung UB Regensburg |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=024770970&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-024770970 |
Datensatz im Suchindex
_version_ | 1804148869117771776 |
---|---|
adam_text | CONTENTS
SECTION
I
Fundamental Physicochemical
Concepts
INTRODUCTION: HOMEOSTASIS
AND CELLULAR PHYSIOLOGY
.....1
Homeostasis Enables the Body to Survive
in Diverse Environments
............................1
The Body Is an Ensemble of Functionally
and Spatially Distinct Compartments
.......2
The Biological Membranes That
Surround Cells and Subcellular
Organelles Are
Lipid Bilayers.
.............2
Biomembranes
Are Formed Primarily
from Phospholipids but May
Abo Contain Cholesterol
and Sphingolipids
...............................3
Biomembranes
Are Not Uniform
Structures
............................................3
Transport Processes Are Essential to
Physiological Function
...............................4
Cellular Physiology Focuses
on Membrane-Mediated Processes
and on Muscle Function
.............................4
Summary
..........................................................5
Key Words and Concepts
................................5
DIFFUSION
AND PERMEABILITY
................7
Dimisión
Is the Migration of Molecules
down a Concentration Gradient
................7
Fick s First Law of Diffusion Summarizes
our Intuitive Understanding of Diffusion
.....7
Essential Aspects of Diffusion Are Revealed
by Quantitative Examination of Random,
Microscopic Movements of Molecules
......9
Random Movements Result in
Meandering.
........................................9
The Root-Mean-Squared Displacement
Is a Good Measure of the Progress
of Diffusion
.......................................10
Square-Root-of-Time Dependence Makes
Diffusion Ineffective for Transporting
Molecules Over Large Distances
.......10
Diffusion Constrains Cell Biology and
Physiology
.........................................11
Fick s First Law Can Be Used to Describe
Diffusion across a Membrane Barrier
.....11
The Net Flux Through a Membrane
Is the Result of Balancing Influx
Against Efflux.
...................................14
The Permeability Determines How
Rapidly a Solute Can Be
Transported Through a Membrane..
14
Summary
........................................................18
KeyWords and Concepts
..............................18
Study Problems
..............................................18
CONTENTS
OSMOTIC
PRESSURE
AND WATER MOVEMENT
.......19
Osmosis Is the Transport of Solvent Driven
by a Difference in Solute Concentration
Across a Membrane That Is Impermeable
to Solute
.....................................................19
Water Transport during Osmosis Leads to
Changes in Volume
...................................20
Osmotic Pressure Drives the Net
Transport of Water during Osmosis
........20
Osmotic Pressure and Hydrostatic Pressure
Are Functionally Equivalent in Their
Ability to Drive Water Movement
Through a Membrane
..............................22
The Direction of Fluid Flow Through
the Capillary Wall Is Determined
by the Balance of Hydrostatic and
Osmotic Pressures as Described
by the Starling Equation
...................23
Only Impermeant Solutes Can Have
Permanent Osmotic Effects
......................27
Transient Changes in Cell Volume
Occur in Response to Changes in
the Extracellular Concentration
ofPermeant Solutes
..........................27
Persistent Changes in Cell Volume
Occur in Response to Changes in
the Extracellular Concentration
of Impermeant Solutes
......................29
The Amount of Impermeant Solute
Inside the Cell Determines the
Cell Volume
.......................................29
Summary
........................................................31
KeyWords and Concepts
..............................32
Study Problems
..............................................32
ELECTRICAL CONSEQUENCES
OF IONIC GRADIENTS
............33
Ions Are Typically Present at Different
Concentrations on Opposite Sides
of
a Biomembrane
....................................33
Selective Ionic Permeability Through
Membranes Has Electrical Consequences:
The Nernst Equation
................................33
The Stable Resting Membrane Potential
in a Living Cell Is Established by
Balancing Multiple Ionic Fluxes
...............37
Cell Membranes Are Permeable to
Multiple Ions
.....................................37
The Resting Membrane Potential
Can Be Quantitatively Estimated
by Using the Goldman-Hodgkin-
Katz Equation
...................................39
A Permeant Ion Already in
Electrochemical Equilibrium Does
Not Need to Be Included in the
Goldman-Hodgkin-Katz Equation...
41
The Nernst Equation May Be Viewed
as a Special Case of the Goldman-
Hodgkin-Katz Equation
....................41
EK Is the Floor and the £Na Is the
Ceiling of Membrane Potential
.....42
The Difference Between the Membrane
Potential and the Equilibrium
Potential of an Ion Determines the
Direction of Ion Flow
........................42
The Cell Can Change Its Membrane
Potential by Selectively Changing
Membrane Permeability to Certain Ions
....42
The
Donnan
Effect Is an Osmotic
Threat to Living Cells
...............................43
Summary
........................................................45
KeyWords and Concepts
..............................46
Study Problems
..............................................46
CONTENTS
SECTION
II
Ion
Channels
and Excitable
Membranes
ION
CHANNELS....................47
Ion
Channels
Are Critical Determinants
of the Electrical Behavior of Membranes
...47
Distinct Types of Ion Channels Have
Several Common Properties
....................48
Ion Channels Increase the Permeability
of the Membrane to Ions
...................48
Ion Channels Are Integral Membrane
Proteins That Form Gated Pores
......49
Ion Channels Exhibit Ionic Selectivity..
49
Ion Channels Share Structural Similarities
and Can Be Grouped into Gene Families.
..50
Channel Structure Is Studied with
Biochemical and Molecular
Biological Techniques
........................50
Structural Details of a K+ Channel
Are Revealed by X-Ray
Crystallography
.................................51
Summary
........................................................54
Key Words and Concepts
..............................54
Study Problems
..............................................54
Membrane Conductance Is Established
by Open Ion Channels
......................56
Capacitance Reflects the Ability of the
Membrane to Separate Charge
.........56
Passive Membrane Properties Produce
Linear Current-Voltage Relationships
.....57
Membrane Capacitance Affects the Time
Course of Voltage Changes
.......................57
Ionic and
Capacitive
Currents Flow
When a Channel Opens
....................57
The Exponential Time Course of the
Membrane Potential Can Be
Understood in Terms of the Passive
Properties of the Membrane
..............59
Membrane and Axoplasmic Resistances
Affect the Passive Spread of
Subthreshold Electrical Signals
................60
The Decay of Subthreshold Potentials
with Distance Can Be Understood
in Terms of the Passive Properties
of the Membrane
...............................61
The Length Constant Is a Measure of
How Far Away from a Stimulus
Site a Membrane Potential Change
Will Be Detectable
.............................63
Summary
........................................................63
Key Words and Concepts
..............................64
Study Problems
..............................................64
PASSIVE ELECTRICAL
PROPERTIES
OF MEMBRANES
..................55
The Time Course and Spread of Membrane
Potential Changes Are Predicted by the
Passive Electrical Properties of the
Membrane
.......».........................................55
The Equivalent Circuit of a Membrane
Has a Resistor in Parallel with
a Capacitor
.....................................................56
GENERATION AND
PROPAGATION OF
THE ACTION POTENTIAL
.........67
The Action Potential Is a Rapid and
Transient Depolarization of the
Membrane Potential in Electrically
Excitable Cells
................................................67
Properties of Action Potentials
Can Be Studied with Intracellular
Microelectrodes
.................................67
CONTENTS
Ion
Channel Function Is Studied with a
Voltage Clamp
...........................................69
Ionic Currents Are Measured at a
Constant Membrane Potential
with a Voltage Clamp
.......................69
Ionic Currents Are Dependent on
Voltage and Time
..............................71
Voltage-Gated Channels Exhibit
Voltage-Dependent Conductances
.... 72
Individual Ion Channels Have Two
Conductance Levels
..................................74
Na 1 Channels Inactivate during
Maintained Depolarization
......................75
Action Potentials Are Generated by Voltage-
Gated Na+ and K+ Channels
........................76
The Equivalent Circuit of a Patch of
Membrane Can Be Used to Describe
Action Potential Generation
.............76
The Action Potential Is a Cyclical Process
of Channel Opening and Closing.
.........78
Both Na+ Channel Inactivation
and Open Voltage-Gated K+
Channels Contribute to the
Refractory Period
..............................79
Pharmacological Agents That Block
Na+ or K+ Channels, or Interfere
with
Na*
Channel Inactivation,
Alter the Shape of the Action
Potential
............................................79
Action Potential Propagation Occurs as a
Result of Local Circuit Currents
..............80
In Nonmyelinated
Axons an
Action
Potential Propagates as a Continuous
Wave of Excitation Away from the
Initiation Site
....................................80
Conduction Velocity Is Influenced by
the Time Constant, by the Length
Constant, and by Na* Current
Amplitude and Kinetics
....................81
Myelination Increases Action
Potential Conduction Velocity
..........82
Summary
........................................................84
Key Words and Concepts
..............................84
Study Problems
..............................................84
ION CHANNEL
DIVERSITY
.......87
Various Types of Ion Channels Help to
Regulate Cellular Processes
......................87
Voltage-Gated Ca24 Channels
Contribute to Electrical Activity and
Mediate Ca2+ Entry into Cells
.................87
Ca2+ Currents Can Be Recorded
with a Voltage Clamp
.......................88
Ca2* Channel
Blockers
Are
Useful Therapeutic Agents
................90
Many Members of the Transient Receptor
Potential Superfamily of Channels
Mediate Ca2+ Entry
..................................91
Some Members of the TRPC Family
Are Receptor-Operated Channels
.....91
K+-Selective Channels Are the Most
Diverse Type of Channel
..........................92
Neuronal
K+ Channel Diversity
Contributes to the Regulation of
Action Potential Firing Patterns
.......92
Rapidly Inactivating Voltage-Gated
K+ Channels Cause Delays
in Action Potential Generation
.........93
Ca2*-Activated K+ Channels
Are Opened by
Intracellular Ca2+
.............................95
ATP-Sensitive K+ Channels
Are Involved in Glucose-Induced
Insulin Secretion from Pancreatic
ß-Cells...............................................95
A Voltage-Gated K+ Channel Helps
to Repolarize the Cardiac
Action Potential
................................97
CONTENTS
Ion Channel
Activity Can Be Regulated
by Second-Messenger Pathways
...............97
ß-Adrenergic
Receptor Activation
Modulates
L
-Туре
Ca2+ Channels
in Cardiac Muscle
.............................99
Summary
........................................................99
KeyWords and Concepts
............................100
Study Problems
............................................100
SECTION III
Solute Transport
ELECTROCHEMICAL POTENTIAL
ENERGY AND TRANSPORT
PROCESSES
.......................103
Electrochemical Potential Energy Drives
All Transport Processes
...........................103
The Relationship Between Force and
Potential Energy Is Revealed by
Examining Gravity
.........................103
A Gradient in Chemical Potential
Energy Gives Rise to a Chemical
Force That Drives the Movement
of Molecules
.....................................104
An Ion Can Have Both Electrical
and Chemical Potential Energy
......104
The Nernst Equation Is a Simple
Manifestation of the
Electrochemical Potential
................104
How to Use the Electrochemical
Potential to Analyze Transport
Processes
..........................................108
Summary
......................................................
Ill
KeyWords and Concepts
............................
Ill
Study Problems
............................................
Ill
10
PASSIVE SOLUTE
TRANSPORT
....................... 113
Dimisión
across Biological Membranes
Is Limited by
Lipid
Solubility
.................113
Channel, Carrier, and Pump Proteins
Mediate Transport across Biological
Membranes
..............................................114
Transport Through Channels Is
Relatively Fast
.................................
1
14
Channel Density Controls the
Membrane Permeability to
a Substance
.....................................115
The Rate of Transport Through Open
Channels Depends on the Net
Driving Force
..................................115
Transport of Substances Through
Some Channels Is Controlled by
Gating the Opening and
Closing of the Channels
..................115
Carriers Are Integral Membrane Proteins
That Open to Only One Side of the
Membrane at a Time
..............................115
Carriers Facilitate Transport Through
Membranes
.....................................116
Transport by Carriers Exhibits Kinetic
Properties Similar to Those of
Enzyme Catalysis
............................116
Coupling the Transport of One Solute
to the Downhill Transport of Another
Solute Enables Carriers to Move
the Cotransported or Countertransported
Solute Uphill against an Electrochemical
Gradient
...................................................119
Na+/H+ Exchange Is an
Example of
Na^
-Coupled
Countertransport
............................119
CONTENTS
Na 1
Is Cotransported with a
Variety of Solutes Such as Glucose
and
Amino
Acids
....................................119
How Does the Electrochemical Gradient
for One Solute Affect the Gradient
for a Cotransported Solute?
............121
Glucose Uptake Efficiency Can Be
Increased by a Change in the
Na*-Glucose Coupling Ratio
..........121
Net Transport of Some Solutes across
Epithelia Is Effected by Coupling Two
Transport Processes in Series
.................122
Various Inherited Defects of Glucose
Transport Have Been Identified
......122
Na+ Is Exchanged for Solutes Such
as Ca2+ and H+ by Countertransport
Mechanisms
.............................................123
Na+/Ca2+ Exchange Is an Example
of Coupled Countertransport
..........124
Na+/Ca2+ Exchange Is Influenced
by Changes in the Membrane
Potential
...........................................125
Na+/Ca2+ Exchange Is Regulated
by Several Different Mechanisms
........125
Intracellular Ca2* Plays Many
Important Physiological Roles.
........126
Multiple Transport Systems Can Be
Functionally Coupled
.............................126
Tertiary Active Transport
....................129
Summary
......................................................130
KeyWords and Concepts
............................130
Study Problems
............................................131
11
ACTIVE TRANSPORT
............153
Primary Active Transport Converts
the Chemical Energy from ATP into
Electrochemical Potential Energy
Stored in Solute Gradients
.....................133
Three Broad Classes ofATPases
Are Involved in Active
Ion Transport
..................................133
The Plasma Membrane Na+ Pump
(Na 1 , K+-ATPase) Maintains the Low
Na 1
and High K+ Concentrations
in the Cytosol
..........................................134
Nearly All Animal Cells Normally
Maintain a High Intracellular
K* Concentration and a
Low Intracellular Na*
Concentration
.................................134
The Na+ Pump Hydrolyzes ATP
While Transporting Na+
Out of the Cell and
K* into the Cell.
..............................134
TheNa* Pump Is Electrogenic
........135
The Na+ Pump Is the Receptor
for Cardiotonic Steroids Such as
Ouabain and Digoxin
.....................135
Intracellular Ca2+ Signaling Is
Universal and Is Closely Tied to
Ca2+ Homeostasis
...................................136
Ca2* Storage in the Sarcoplasmic/
Endoplasmic Reticulum Is
Mediated by a Ca2+-ATPase
...........139
SERCA
Has Three Isoforms
................139
The Plasma Membrane of Most
Cells Has an ATP-Driven
Ca2+ Pump
.....................................140
The Roles of the Several Ca2*
Transporters Differ in Different
Cell Types
........................................140
Different Distributions of the
NCX and PMCA in the Plasma
Membrane Underlie Their Different
Functions
.........................................140
Several Other Plasma Membrane
Transport ATPases Are Physiologically
Important
................................................141
H* ,K*-ATPase Mediates Gastric
Acid Secretion
.................................141
CONTENTS
Two
Си2 1
-Transporting ATPases Play
Essential Physiological Roles
...........142
ATP-Binding Cassette Transporters
Are a Superfamily ofP-Type
ATPases
...........................................144
Net Transport across Epithelial Cells Depends
on the Coupling of Apical and Basolateral
Membrane Transport Systems
...................145
Epithelia Are Continuous Sheets
of Cells
.............................................145
Epithelia Exhibit Great Functional
Diversity
..........................................145
What Are the Sources ofNa+
for Apical Membrane No 1
-
Coupled Solute Transport?
..............147
Absorption ofCl Occurs by
Several Different Mechanisms
........148
Substances Can Also Be Secreted by
Epithelia
..........................................149
Net Water Flow Is Coupled to
Net Solute Flow across
Epithelia
..........................................150
Summary
......................................................153
KeyWords and Concepts
............................153
Study Problems
............................................154
SECTION IV
Physiology of Synaptic
Transmission
12
155
SYNAPTIC PHYSIOLOGY I
.
The Synapse Is a Junction Between
Cells That Is Specialized for Cell-Cell
Signaling
.......................................................155
Synaptic Transmission Can Be Either
Electrical or Chemical
.....................156
Electrical Synapses Are Designed for
Rapid Synchronous Transmission...
156
Most Synapses Are Chemical Synapses...
157
Neurons Communicate with Other
Neurons and with Muscle by Releasing
Neurotransmitters
...................................159
The Neuromuscular Junction Is a
Large Chemical Synapse
.................160
Transmitter Release at Chemical
Synapses Occurs in Multiples
of a Unit Size
..................................162
Ca2+ Ions Play an Essential Role
in Transmitter Release
....................164
The Synaptic Vesicle Cycle Is a Precisely
Choreographed Process for Delivering
Neurotransmitter
into the Synaptic
Cleft
.........................................................166
The Synaptic Vesicle Is the
Organelle
That Concentrates, Stores, and Delivers
Neurotransmitter
at the Synapse
.......167
Neurotransmitter-Filled Synaptic Vesicles
Dock at the Active Zone and Become
Primed for Exocytosis
..................167
Binding ofCa1+ Ions to Synaptotagmin
Triggers the Fusion and Exocytosis
of the Synaptic Vesicle
.........................169
Retrieval of the Fused Synaptic Vesicle
Back into the Nerve Terminal
Can Occur Through Clathrin-
Independent and Clathrin-
Dependent Mechanisms
..................171
Short-Term Synaptic Plasticity Is a
Transient, Use-Dependent Change in
the Efficacy of Synaptic Transmission...
174
Summary
......................................................177
KeyWords and Concepts
............................178
Study Problems
............................................179
13
SYNAPTIC PHYSIOLOGY II.
.... 181
Chemical Synapses Afford Specificity,
Variety, and Fine Tuning
of
Neurotransmission
.............................181
What Is
a
Neurotransmitter?
..............181
CONTENTS
Receptors Mediate the Actions of
Neurotransmitters
in Postsynaptic Cells...l84
Conventional
Neurotransmitters
Activate Two Classes of Receptors:
Ionotropic Receptors and
Metabotropic Receptors
...................184
Acetylcholine Receptors Can Be Ionotropic
or Metabotropic
......................................186
Nicotinic Acetylcholine Receptors Are
Ionotropic
........................................186
Muscarinic Acetylcholine Receptors Are
Metabotropic
...................................186
Amino
Acid
Neurotransmitters
Mediate
Many Excitatory and Inhibitory
Responses in the Brain
...........................187
Glutamate
Is the Main Excitatory
Neurotransmitter
in the Brain
........187
■y-Aminobutyric Acid and
Glycine
Are
the Main Inhibitory
Neurotransmitters
in the Nervous System
........................188
Neurotransmitters
That Bind to Ionotropic
Receptors Cause Membrane
Conductance Changes
............................189
At Excitatory Synapses, the Reversal
Potential Is More Positive Than the
Action Potential Threshold
.............190
NMDAR andAMPAR Are Channels
with Different Ion Selectivities
and Kinetics
....................................191
Sustained Application of Agonist
Causes Desensitization of
Ionotropic Receptors
........................192
At Inhibitory Synapses, the Reversal
Potential Is More Negative Than the
Action
Potential
Threshold
.............193
Temporal and Spatial Summation of
Postsynaptic Potentials Determine the
Outcome ofSynaptk Transmission
......195
Synaptic Transmission Is Terminated
by Several Mechanisms
...................196
Biogenic Amines,
Purines,
and Neuropeptides
Are Important Classes of Transmitters
with a Wide Spectrum of Actions
..........197
Epinephrine and Norepinephrine
Exert Central and Peripheral
Effects by Activating Two Classes
of Receptors
.........................................197
Dopaminergic Transmission Is
Important for the Coordination
of Movement and for Cognition
.....198
Serotonergic Transmission
Is Important in Emotion
and Behavior.
..................................199
Histamine
Serves Diverse Central
and Peripheral Functions
................200
ATP Is Frequently Coreleased with
Other
Neurotransmitters
................200
Neuropeptide
Transmitters Are
Structurally and Functionally
Diverse
............................................201
Unconventional
Neurotransmitters
Modulate Many Complex
Physiological Responses
.........................202
Unconventional
Neurotransmitters
Are Secreted in Nonquantal
Fashion
................................................202
Many Effects of Nitric Oxide and Carbon
Monoxide Are Mediated Locally
by Soluble Guanylyl Cyclase
...........202
Endocannabinoids Can Mediate
Retrograde
Neurotransmission
.......202
Long-Term Synaptic Potentiation and
Depression Are Persistent Changes in
the Efficacy of Synaptic Transmission
Induced by Neural Activity
....................203
Long-Term Potentiation Is a Long-
Lasting Increase in the Efficacy
of Transmission at Excitatory
Synapses
..........................................203
Long-Term Depression Is a Long-
Lasting Decrease in the Efficacy of
Transmission at Excitatory
Synapses
..........................................205
Summary
......................................................206
KeyWords and Concepts
............................207
Study Problems
............................................208
CONTENTS
SECTION
V
Molecular
Motors
and Muscle Contraction
14
MOLECULAR
MOTORS
AND THE MECHANISM
OF
MUSCLE CONTRACTION...
211
Molecular
Motors Produce
Movement
by Converting Chemical Energy into
Kinetic Energy
.........................................211
The Three Types of Molecular Motors
Are Myosin, Kinesin, and Dynein...
211
Single Skeletal Muscle Fibers Are
Composed of Many Myofibrils
..............212
The
Sarcomere
Is the Basic Unit of
Contraction in Skeletal Muscle
..............212
Sarcomeres
Consist of Interdigitating
Thin and Thick Filaments
..............212
Thick
Filaments
Are Composed
Mostly of Myosin
.............................214
Thin Filaments in Skeletal Muscle Are
Composed of Four Major Proteins:
Actin, Tropomyosin, Troponin, and
Nebulin
...........................................214
Muscle Contraction Results from Thick and
Thin Filaments Sliding Past Each Other
(The Sliding Filament Mechanism)....
215
The Cross-Bridge Cycle Powers Muscle
Contraction
.............................................216
In Skeletal and Cardiac Muscles, Ca2+
Activates Contraction by Binding to
the Regulatory Protein Troponin
С
.......218
The Structure and Function of Cardiac
Muscle and Smooth Muscle Are
Distinctly Different from Those
of Skeletal Muscle
...................................220
Cardiac Muscle Is Striated
..................220
Cardiac Muscle Cells Require a
Continuous Supply of Energy
.........220
To Enable the Heart to Act as a Pump,
Myocytes Comprising Each Chamber
Must Contract Synchronously
.........220
Smooth Muscles Are Not Striated
.......220
In Smooth Muscle, Elevation of
Intracellular Ca2+ Activates
Contraction by Promoting the
Phosphorylation of the Myosin
Regulatory Light Chain
..................223
Summary
......................................................226
KeyWords and Concepts
............................227
Study Problems
............................................227
15
EXCITATION-CONTRACTION
COUPLING IN MUSCLE
........229
Skeletal Muscle Contraction Is
Initiated by a Depolarization of
the Surface Membrane
............................229
Skeletal Muscle Has a High Resting
Or Permeability
.............................230
A Single Action Potential Causes a
Brief Contraction Called a Twitch
.....230
How Does Depolarization Increase
Intracellular Ca2+ in
Skeletal Muscle?
..............................230
Direct Mechanical Interaction Between
Sarcolemmal and Sarcoplasmic
Reticulum Membrane Proteins
Mediates Excitation-Contraction
Coupling in Skeletal Muscle
...................231
In Skeletal Muscle, Depolarization of the
Т
-Tubule Membrane Is Required for
Excitation-Contraction Coupling
......231
In Skeletal Muscle, Extracellular
Ca2^ Is Not Required
for Contraction
...............................232
In Skeletal Muscle, the Sarcoplasmic
Reticulum Stores All the Ca2^
Needed for Contraction
...................232
XVIII
CONTENTS
The Triad Is the Structure That Mediates
Excitation-Contraction Coupling
in Skeletal Muscle
...........................233
In Skeletal Muscle, Excitation-
Contraction Coupling Is
Mechanical
......................................235
Skeletal Muscle Relaxes When Ca2+
Is Returned to the Sarcoplasmic
Reticulum by
SERCA
......................235
Ca^-Induced Ca2+ Release Is Central
to Excitation-Contraction Coupling
in Cardiac Muscle
...................................237
In Cardiac Muscle, Communication
Between the Sarcoplasmic Reticulum
and Sarcolemma Occurs at
Dyads and Peripheral Couplings....
237
Cardiac Excitation-Contraction
Coupling Requires Extracellular
Ca2+ and Ca2+ Entry Through
L
-Туре
Ca1+ Channels
(Dihydropyridine Receptors)
..........238
Ca2+ That Enters the Cell during
the Cardiac Action Potential Must
Be Removed to Maintain a
Steady State
.....................................240
Cardiac Contraction Can Be Regulated
by Altering Intracellular Ca2+
.............240
Smooth Muscle Excitation-Contraction
Coupling Is Fundamentally Different from
That in Skeletal and Cardiac Muscles....
241
Smooth Muscles Are Highly Diverse
... 241
The Density of
Innervation
Varies
Greatly among Different Types of
Smooth Muscles
..............................241
Some Smooth Muscles Are Normally
Activated by Depolarization
...........242
Some Smooth Muscles Can Be Activated
without Depolarization by
Pharmacomechanical Coupling
......243
Ca2+ Signaling, Ca2+ Sensitivity,
and Ca2+ Balance in Smooth
Muscle May Be Altered Under
Physiological and Pathophysiological
Conditions
...........................................245
Summary
......................................................246
KeyWords and Concepts
............................247
Study Problems
............................................247
MECHANICS OF MUSCLE
CONTRACTION
...................249
The Total Force Generated by a Skeletal
Muscle Can Be Varied
.............................249
Whole Muscle Force Can Be Increased
by Recruiting Motor Units
..............249
A Single Action Potential Produces a
Twitch Contraction
.........................249
Repetitive Stimulation Produces Fused
Contractions
....................................251
Skeletal Muscle Mechanics Is Characterized
by Two Fundamental Relationships
.......252
The Sliding Filament Mechanism
Underlies the Length-Tension
Curve
...............................................253
In Isotonic Contractions, Shortening
Velocity Decreases as Force
Increases
..........................................255
There Are Three Types of Skeletal Muscle
Motor Units
.............................................255
The Force Generated by Cardiac Muscle
Is Regulated by Mechanisms That
Control Intracellular Ca2+
......................257
Cardiac Muscle Generates Long-
Duration Contractions
....................257
Total Force Developed by Cardiac
Muscle Is Determined by
Intracellular Ca2+
...........................257
Mechanical Properties of Cardiac and
Skeletal Muscle Are Similar but
Quantitatively Different
.........................259
Cardiac and Skeletal Muscles Have
Similar Length-Tension
Relationships
...................................259
CONTENTS
The Contractile Force
of the
Intact
Heart Is a Function of Initial
(End-Diastolic) Volume
..................259
Shortening Velocity Is Slower in Cardiac
Than in Skeletal Muscle
..................260
Dynamics of Smooth Muscle Contraction
Differ Markedly from Those of Skeletal
and Cardiac Muscle
................................260
Three Key Relationships Characterize
Smooth Muscle Function
................260
The Length-Tension Relationship in
Smooth Muscles Is Consistent with
the Sliding Filament Mechanism
of Contraction
.................................260
The Velocity of Shortening Is Much
Lower in Smooth Muscle Than in
Skeletal Muscle
................................261
Single Actin-Myosin Molecular
Interactions Reveal How Smooth
and Skeletal Muscles Generate the
Same Amount of Stress Despite Very
Different Shortening Velocities
........261
Velocity of Smooth Muscle Shortening
and the Amount of Stress Generated
Depend on the Extent ofMyosin
Light Chain Phosphorylation
.........263
The Kinetic Properties of the Cross-
Bridge Cycle Depend on the My
osin
Isoforms
Expressed in the Myocytes
.....263
The Relationships among Intracellular
Ca2+, Myosin Light Chain
Phosphorylation, and Force
in Smooth Muscles Is Complex
.............264
Tonic Smooth Muscles Can Maintain
Tension with Little Consumption
of ATP
.............................................264
Perspective: Smooth Muscles Are
Functionally Diverse
.......................265
Summary
......................................................267
Keywords and Concepts
............................268
Study Problems
............................................268
.271
EPILOGUE
...
APPENDIXES
APPENDIX A
ABBREVIATIONS, SYMBOLS,
AND NUMERICAL CONSTANTS
...........273
Abbreviations
...............................................273
Symbols
........................................................274
Numerical Constants
...................................274
APPENDIX
В
A MATHEMATICAL REFRESHER
..........275
Exponents
....................................................275
Definition of Exponentiation
..............275
Multiplication of Exponentials
............275
Meaning of the Number
0
as
Exponent
.........................................275
Negative Numbers as Exponents
.........275
Division of Exponentials
.....................276
Exponentials of Exponentials
..............276
Fractions as Exponents
........................276
Logarithms
...................................................276
Definition of the Logarithm
................276
Logarithm of a Product
.......................277
Logarithm of an Exponential
..............277
Changing the Base of a Logarithm
......277
Solving Quadratic Equations
......................277
Differentiation and Derivatives
..................278
The Slope of a Graph and the
Derivative.
.......................................278
Derivative of a Constant Number
.......279
Differentiating the Sum or
Difference of Functions
...................279
Differentiating Composite Functions:
The Chain Rule
...............................280
Derivative of the Natural Logarithm
Function
..........................................281
Integration: The
Antiderivative
and the Definite Integral
........................281
CONTENTS
Indefinite Integral (Also Known
as the
Antiderivative)
......................281
Definite Integral
..................................282
Differential Equations
.................................283
First-order Equations with
Separable Variables
.........................283
Exponential Decay.
..............................283
First-order Linear Differential
Equations
........................................284
APPENDIX
С
ROOT-MEAN-SQUARED DISPLACEMENT
OF DIFFUSING MOLECULES
..............287
APPENDIX
D
SUMMARY OF ELEMENTARY
CIRCUIT THEORY
........................291
Cell Membranes Are Modeled
with Electrical Circuits
...........................291
Definitions of Electrical Parameters
...........291
Electrical Potential and Potential
Difference
............................................291
Current
................................................291
Resistance and Conductance
...............291
Capacitance
.........................................292
Current Flow in Simple Circuits
................292
A Battery and Resistor in Parallel
.......292
A Resistor and Capacitor in Parallel...
294
APPENDIX
E
ANSWERS TO STUDY PROBLEMS
........299
APPENDIX
F
REVIEW EXAMINATION
..................311
Answers to Review Examination
................323
|
any_adam_object | 1 |
author2 | Blaustein, Mordecai P. |
author2_role | edt |
author2_variant | m p b mp mpb |
author_facet | Blaustein, Mordecai P. |
building | Verbundindex |
bvnumber | BV039912334 |
classification_rvk | WE 2200 WW 2200 |
ctrlnum | (OCoLC)793509344 (DE-599)OBVAC08900939 |
dewey-full | 571.6 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 571 - Physiology & related subjects |
dewey-raw | 571.6 |
dewey-search | 571.6 |
dewey-sort | 3571.6 |
dewey-tens | 570 - Biology |
discipline | Biologie |
edition | 2. ed. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01986nam a2200505 c 4500</leader><controlfield tag="001">BV039912334</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20130319 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">120224s2012 ad|| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780323057097</subfield><subfield code="c">(pbk.) £27.99</subfield><subfield code="9">978-0-323-05709-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0323057098</subfield><subfield code="c">(pbk.) £27.99</subfield><subfield code="9">0-323-05709-8</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)793509344</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)OBVAC08900939</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-578</subfield><subfield code="a">DE-355</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">571.6</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">WE 2200</subfield><subfield code="0">(DE-625)148266:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">WW 2200</subfield><subfield code="0">(DE-625)158906:13423</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QU 375</subfield><subfield code="2">nlm</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Cellular physiology and neurophysiology</subfield><subfield code="c">ed. by Mordecai P. Blaustein ...</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Philadelphia, Pa.</subfield><subfield code="b">Elsevier, Mosby</subfield><subfield code="c">2012</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XX, 337 S.</subfield><subfield code="b">zahlr. Ill., graph. Darst.</subfield><subfield code="c">24 cm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Mosby's physiology monograph series</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes Internet access. - 1. Aufl. u.d.T.: Blaustein, Mordecai P.: Cellular physiology</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nervenzelle</subfield><subfield code="0">(DE-588)4041649-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Zelle</subfield><subfield code="0">(DE-588)4067537-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Neurophysiologie</subfield><subfield code="0">(DE-588)4041897-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Physiologie</subfield><subfield code="0">(DE-588)4045981-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Cell physiology.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Neurophysiology.</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Zelle</subfield><subfield code="0">(DE-588)4067537-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Physiologie</subfield><subfield code="0">(DE-588)4045981-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Neurophysiologie</subfield><subfield code="0">(DE-588)4041897-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Nervenzelle</subfield><subfield code="0">(DE-588)4041649-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="C">b</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Blaustein, Mordecai P.</subfield><subfield code="4">edt</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=024770970&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-024770970</subfield></datafield></record></collection> |
id | DE-604.BV039912334 |
illustrated | Illustrated |
indexdate | 2024-07-10T00:13:59Z |
institution | BVB |
isbn | 9780323057097 0323057098 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-024770970 |
oclc_num | 793509344 |
open_access_boolean | |
owner | DE-578 DE-355 DE-BY-UBR |
owner_facet | DE-578 DE-355 DE-BY-UBR |
physical | XX, 337 S. zahlr. Ill., graph. Darst. 24 cm |
publishDate | 2012 |
publishDateSearch | 2012 |
publishDateSort | 2012 |
publisher | Elsevier, Mosby |
record_format | marc |
series2 | Mosby's physiology monograph series |
spelling | Cellular physiology and neurophysiology ed. by Mordecai P. Blaustein ... 2. ed. Philadelphia, Pa. Elsevier, Mosby 2012 XX, 337 S. zahlr. Ill., graph. Darst. 24 cm txt rdacontent n rdamedia nc rdacarrier Mosby's physiology monograph series Includes Internet access. - 1. Aufl. u.d.T.: Blaustein, Mordecai P.: Cellular physiology Nervenzelle (DE-588)4041649-5 gnd rswk-swf Zelle (DE-588)4067537-3 gnd rswk-swf Neurophysiologie (DE-588)4041897-2 gnd rswk-swf Physiologie (DE-588)4045981-0 gnd rswk-swf Cell physiology. Neurophysiology. Zelle (DE-588)4067537-3 s Physiologie (DE-588)4045981-0 s DE-604 Neurophysiologie (DE-588)4041897-2 s Nervenzelle (DE-588)4041649-5 s b DE-604 Blaustein, Mordecai P. edt Digitalisierung UB Regensburg application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=024770970&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Cellular physiology and neurophysiology Nervenzelle (DE-588)4041649-5 gnd Zelle (DE-588)4067537-3 gnd Neurophysiologie (DE-588)4041897-2 gnd Physiologie (DE-588)4045981-0 gnd |
subject_GND | (DE-588)4041649-5 (DE-588)4067537-3 (DE-588)4041897-2 (DE-588)4045981-0 |
title | Cellular physiology and neurophysiology |
title_auth | Cellular physiology and neurophysiology |
title_exact_search | Cellular physiology and neurophysiology |
title_full | Cellular physiology and neurophysiology ed. by Mordecai P. Blaustein ... |
title_fullStr | Cellular physiology and neurophysiology ed. by Mordecai P. Blaustein ... |
title_full_unstemmed | Cellular physiology and neurophysiology ed. by Mordecai P. Blaustein ... |
title_short | Cellular physiology and neurophysiology |
title_sort | cellular physiology and neurophysiology |
topic | Nervenzelle (DE-588)4041649-5 gnd Zelle (DE-588)4067537-3 gnd Neurophysiologie (DE-588)4041897-2 gnd Physiologie (DE-588)4045981-0 gnd |
topic_facet | Nervenzelle Zelle Neurophysiologie Physiologie |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=024770970&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT blausteinmordecaip cellularphysiologyandneurophysiology |