Computability and complexity theory:
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
New York [u.a.]
Springer
2011
|
Ausgabe: | 2. ed. |
Schriftenreihe: | Texts in computer science
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XVI, 298 S. graph. Darst. |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV039910286 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | t | ||
008 | 120223s2011 d||| |||| 00||| eng d | ||
020 | |z 9781461406815 |c Print |9 978-1-4614-0681-5 | ||
035 | |a (OCoLC)778566042 | ||
035 | |a (DE-599)BVBBV039910286 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-11 | ||
082 | 0 | |a 004 | |
084 | |a ST 120 |0 (DE-625)143585: |2 rvk | ||
084 | |a ST 130 |0 (DE-625)143588: |2 rvk | ||
084 | |a ST 134 |0 (DE-625)143590: |2 rvk | ||
100 | 1 | |a Homer, Steven |e Verfasser |4 aut | |
245 | 1 | 0 | |a Computability and complexity theory |c Steven Homer ; Alan L. Selman |
250 | |a 2. ed. | ||
264 | 1 | |a New York [u.a.] |b Springer |c 2011 | |
300 | |a XVI, 298 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Texts in computer science | |
650 | 4 | |a Computer science | |
650 | 4 | |a Information theory | |
650 | 4 | |a Computer software | |
650 | 4 | |a Theory of Computation | |
650 | 4 | |a Algorithm Analysis and Problem Complexity | |
650 | 4 | |a Computer science | |
650 | 4 | |a Information theory | |
650 | 4 | |a Computational complexity | |
650 | 4 | |a Informatik | |
650 | 0 | 7 | |a Komplexitätstheorie |0 (DE-588)4120591-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Berechnungstheorie |0 (DE-588)4005581-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Berechnungstheorie |0 (DE-588)4005581-4 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Komplexitätstheorie |0 (DE-588)4120591-1 |D s |
689 | 1 | |5 DE-604 | |
700 | 1 | |a Selman, Alan L. |e Verfasser |4 aut | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=024768960&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-024768960 |
Datensatz im Suchindex
_version_ | 1804148866401959936 |
---|---|
adam_text | Titel: Computability and complexity theory
Autor: Homer, Steven
Jahr: 2011
Contents
1 Preliminaries................................................................ 1
1.1 Words and Languages................................................ 1
1.2 Ä -adic Representation................................................ 2
1.3 Partial Functions...................................................... 3
1.4 Graphs................................................................ 4
1.5 Propositional Logic.................................................. 5
1.5.1 Boolean Functions.......................................... 7
1.6 Cardinality............................................................ 8
1.6.1 OrderedSets................................................ 10
1.7 Elementary Algebra.................................................. 10
1.7.1 Rings and Fields............................................ 10
1.7.2 Groups....................................................... 15
1.7.3 Number Theory............................................. 17
2 Introduction to Computability............................................ 23
2.1 Turing Machines..................................................... 24
2.2 Turing Machine Concepts............................................ 26
2.3 Variations of Turing Machines....................................... 28
2.3.1 Multitape Turing Machines................................ 29
2.3.2 Nondeterministic Turing Machines........................ 32
2.4 Church s Thesis...................................................... 35
2.5 RAMs................................................................. 36
2.5.1 Turing Machines for RAMS............................... 40
3 Undecidability............................................................... 41
3.1 Decision Problems................................................... 41
3.2 Undecidable Problems............................................... 42
3.3 Pairing Functions..................................................... 45
3.4 Computably Enumerable Sets....................................... 47
3.5 Halting Problem, Reductions, and Complete Sets.................. 50
3.5.1 Complete Problems......................................... 52
3.6 S-m-n Theorem....................................................... 53
xiv Contents
3.7 Recursion Theorem.................................................. 56
3.8 Rice s Theorem....................................................... 58
3.9 Turing Reductions and Oracle Turing Machines ................... 60
3.10 Recursion Theorem: Continued..................................... 67
3.11 References............................................................ 71
3.12 Additional Homework Problems.................................... 71
4 Introduction to Complexity Theory...................................... 75
4.1 Complexity Classes and Complexity Measures..................... 76
4.1.1 Computing Functions....................................... 79
4.2 Prerequisites.......................................................... 79
5 Basic Results of Complexity Theory...................................... 81
5.1 Linear Compression and Speedup................................... 82
5.2 Constructible Functions.............................................. 89
5.2.1 Simultaneous Simulation................................... 90
5.3 Tape Reduction....................................................... 93
5.4 Inclusion Relationships.............................................. 99
5.4.1 Relations Between the Standard Classes.................. 107
5.5 Separation Results.................................................... 109
5.6 Translation Techniques and Padding................................ 113
5.6.1 Tally Languages............................................ 116
5.7 Relations Between the Standard Classes: Continued............... 117
5.7.1 Complements of Complexity Classes:
The Immerman-Szelepcsenyi Theorem................... 118
5.8 Additional Homework Problems.................................... 122
6 Nondeterminism and NP-Completeness................................. 123
6.1 Characterizing NP.................................................... 124
6.2 TheClassP........................................................... 125
6.3 Enumerations......................................................... 127
6.4 NP-Completeness.................................................... 129
6.5 The Cook-Levin Theorem........................................... 131
6.6 More NP-Complete Problems....................................... 136
6.6.1 The Diagonal Set Is NP-Complete......................... 137
6.6.2 Some Natural NP-Complete Problems.................... 138
6.7 Additional Homework Problems.................................... 142
7 Relative Computability .................................................... 145
7.1 NP-Hardness.......................................................... 147
7.2 Search Problems...................................................... 150
7.3 The Structure of NP.................................................. 153
7.3.1 Composite Number and Graph Isomorphism............. 157
7.3.2 Reflection................................................... 160
7.4 The Polynomial Hierarchy........................................... 161
7.5 Complete Problems for Other Complexity Classes................. 169
7.5.1 PSPACE..................................................... 169
Contents xv
7.5.2 Exponential Time........................................... 173
7.5.3 Polynomial Time and Logarithmic Space................. 174
7.5.4 A Note on Provably Intractable Problems................. 178
7.6 Additional Homework Problems.................................... 178
8 Nonuniform Complexity................................................... 181
8.1 Polynomial Size Families of Circuits ............................... 184
8.1.1 An Encoding of Circuits.................................... 187
8.1.2 Advice Classes.............................................. 188
8.2 The Low and High Hierarchies...................................... 191
9 Parallelism................................................................... 201
9.1 Alternating Turing Machines........................................ 201
9.2 Uniform Families of Circuits........................................ 209
9.3 Highly Parallelizable Problems...................................... 213
9.4 Uniformity Conditions............................................... 216
9.5 Alternating Turing Machines and Uniform Families of Circuits... 219
10 Probabilistic Complexity Classes......................................... 225
10.1 TheClassPP.......................................................... 225
10.2 TheClassRP......................................................... 229
10.2.1 TheClassZPP.............................................. 230
10.3 TheClassBPP........................................................ 231
10.4 Randomly Chosen Hash Functions.................................. 237
10.4.1 Operators.................................................... 239
10.5 The Graph Isomorphism Problem................................... 242
10.6 Additional Homework Problems.................................... 246
11 Introduction to Counting Classes......................................... 247
11.1 Unique Satisfiability ................................................. 249
11.2 Toda s Theorem...................................................... 253
11.2.1 Results on BPP and © P.................................... 253
11.2.2 The First Part of Toda s Theorem.......................... 257
11.2.3 The Second Part of Toda s Theorem....................... 257
11.3 Additional Homework Problems.................................... 260
12 Interactive Proof Systems.................................................. 261
12.1 The Formal Model ................................................... 261
12.2 The Graph Non-Isomorphism Problem............................. 263
12.3 Arthur-Merlin Games................................................ 265
12.4 IP Is Included in PSPACE ........................................... 267
12.5 PSPACE Is Included in IP........................................... 270
12.5.1 TheLanguageESAT....................................... 270
12.5.2 True Quantified Boolean Formulas........................ 274
12.5.3 The Proof.................................................... 275
12.6 Additional Homework Problems.................................... 282
xvi Contents
References......................................................................... 283
Author Index...................................................................... 289
Subject Index..................................................................... 291
|
any_adam_object | 1 |
author | Homer, Steven Selman, Alan L. |
author_facet | Homer, Steven Selman, Alan L. |
author_role | aut aut |
author_sort | Homer, Steven |
author_variant | s h sh a l s al als |
building | Verbundindex |
bvnumber | BV039910286 |
classification_rvk | ST 120 ST 130 ST 134 |
ctrlnum | (OCoLC)778566042 (DE-599)BVBBV039910286 |
dewey-full | 004 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 004 - Computer science |
dewey-raw | 004 |
dewey-search | 004 |
dewey-sort | 14 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
edition | 2. ed. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01883nam a2200529 c 4500</leader><controlfield tag="001">BV039910286</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">120223s2011 d||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9781461406815</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4614-0681-5</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)778566042</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV039910286</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-11</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">004</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 120</subfield><subfield code="0">(DE-625)143585:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 130</subfield><subfield code="0">(DE-625)143588:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 134</subfield><subfield code="0">(DE-625)143590:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Homer, Steven</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Computability and complexity theory</subfield><subfield code="c">Steven Homer ; Alan L. Selman</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">2011</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XVI, 298 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Texts in computer science</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer science</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Information theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer software</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Theory of Computation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algorithm Analysis and Problem Complexity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer science</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Information theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computational complexity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Informatik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Komplexitätstheorie</subfield><subfield code="0">(DE-588)4120591-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Berechnungstheorie</subfield><subfield code="0">(DE-588)4005581-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Berechnungstheorie</subfield><subfield code="0">(DE-588)4005581-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Komplexitätstheorie</subfield><subfield code="0">(DE-588)4120591-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Selman, Alan L.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=024768960&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-024768960</subfield></datafield></record></collection> |
id | DE-604.BV039910286 |
illustrated | Illustrated |
indexdate | 2024-07-10T00:13:56Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-024768960 |
oclc_num | 778566042 |
open_access_boolean | |
owner | DE-11 |
owner_facet | DE-11 |
physical | XVI, 298 S. graph. Darst. |
publishDate | 2011 |
publishDateSearch | 2011 |
publishDateSort | 2011 |
publisher | Springer |
record_format | marc |
series2 | Texts in computer science |
spelling | Homer, Steven Verfasser aut Computability and complexity theory Steven Homer ; Alan L. Selman 2. ed. New York [u.a.] Springer 2011 XVI, 298 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Texts in computer science Computer science Information theory Computer software Theory of Computation Algorithm Analysis and Problem Complexity Computational complexity Informatik Komplexitätstheorie (DE-588)4120591-1 gnd rswk-swf Berechnungstheorie (DE-588)4005581-4 gnd rswk-swf Berechnungstheorie (DE-588)4005581-4 s DE-604 Komplexitätstheorie (DE-588)4120591-1 s Selman, Alan L. Verfasser aut HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=024768960&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Homer, Steven Selman, Alan L. Computability and complexity theory Computer science Information theory Computer software Theory of Computation Algorithm Analysis and Problem Complexity Computational complexity Informatik Komplexitätstheorie (DE-588)4120591-1 gnd Berechnungstheorie (DE-588)4005581-4 gnd |
subject_GND | (DE-588)4120591-1 (DE-588)4005581-4 |
title | Computability and complexity theory |
title_auth | Computability and complexity theory |
title_exact_search | Computability and complexity theory |
title_full | Computability and complexity theory Steven Homer ; Alan L. Selman |
title_fullStr | Computability and complexity theory Steven Homer ; Alan L. Selman |
title_full_unstemmed | Computability and complexity theory Steven Homer ; Alan L. Selman |
title_short | Computability and complexity theory |
title_sort | computability and complexity theory |
topic | Computer science Information theory Computer software Theory of Computation Algorithm Analysis and Problem Complexity Computational complexity Informatik Komplexitätstheorie (DE-588)4120591-1 gnd Berechnungstheorie (DE-588)4005581-4 gnd |
topic_facet | Computer science Information theory Computer software Theory of Computation Algorithm Analysis and Problem Complexity Computational complexity Informatik Komplexitätstheorie Berechnungstheorie |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=024768960&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT homersteven computabilityandcomplexitytheory AT selmanalanl computabilityandcomplexitytheory |