Harmonic functions and potentials on finite or infinite networks:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Berlin ; Heidelberg
Springer
2011
|
Schriftenreihe: | Lecture notes of the Unione Matematica Italiana
12 |
Schlagworte: | |
Online-Zugang: | Inhaltstext Inhaltsverzeichnis |
Beschreibung: | Literaturangaben |
Beschreibung: | X, 141 S. 24 cm |
ISBN: | 9783642213984 3642213987 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV039877940 | ||
003 | DE-604 | ||
007 | t | ||
008 | 120209s2011 |||| 00||| eng d | ||
015 | |a 11,N18 |2 dnb | ||
015 | |a 11,A43 |2 dnb | ||
016 | 7 | |a 1011273594 |2 DE-101 | |
020 | |a 9783642213984 |c kart. : EUR 37.40 (DE, freier Pr.) |9 978-3-642-21398-4 | ||
020 | |a 3642213987 |9 3-642-21398-7 | ||
024 | 3 | |a 9783642213984 | |
028 | 5 | 2 | |a Best.-Nr.: 80063356 |
035 | |a (OCoLC)731916170 | ||
035 | |a (DE-599)DNB1011273594 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-19 | ||
082 | 0 | |a 515.96 |2 22/ger | |
084 | |a SK 750 |0 (DE-625)143254: |2 rvk | ||
084 | |a 510 |2 sdnb | ||
100 | 1 | |a Anandam, Victor |e Verfasser |4 aut | |
245 | 1 | 0 | |a Harmonic functions and potentials on finite or infinite networks |c Victor Anandam |
264 | 1 | |a Berlin ; Heidelberg |b Springer |c 2011 | |
300 | |a X, 141 S. |c 24 cm | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Lecture notes of the Unione Matematica Italiana |v 12 | |
500 | |a Literaturangaben | ||
650 | 0 | 7 | |a Harmonische Funktion |0 (DE-588)4159122-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Potenzialtheorie |0 (DE-588)4046939-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Netzwerk |g Graphentheorie |0 (DE-588)4705155-3 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Harmonische Funktion |0 (DE-588)4159122-7 |D s |
689 | 0 | 1 | |a Netzwerk |g Graphentheorie |0 (DE-588)4705155-3 |D s |
689 | 0 | 2 | |a Potenzialtheorie |0 (DE-588)4046939-6 |D s |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |t Harmonic Functions and Potentials on Finite or Infinite Networks |
830 | 0 | |a Lecture notes of the Unione Matematica Italiana |v 12 |w (DE-604)BV022297190 |9 12 | |
856 | 4 | 2 | |m X:MVB |q text/html |u http://deposit.dnb.de/cgi-bin/dokserv?id=3719735&prov=M&dok_var=1&dok_ext=htm |3 Inhaltstext |
856 | 4 | 2 | |m DNB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=024737128&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-024737128 |
Datensatz im Suchindex
_version_ | 1805146069497020416 |
---|---|
adam_text |
IMAGE 1
CONTENTS
1 LAPLACE OPERATORS ON NETWORKS AND TREES 1
1 . 1 INTRODUCTION 1
1.2 PRELIMINARIES 4
1.2.1 EXAMPLES OF SUPERHARMONIC FUNCTIONS ON NETWORKS 8
1.3 GREEN'S FORMULAS 10
1.4 MINIMUM PRINCIPLE 13
1.5 INFINITE TREES 16
2 POTENTIAL THEORY ON FINITE NETWORKS 21
2.1 INCIDENCE MATRIX, KIRCHHOFF 'S PROBLEM 21
2.2 DIRICHLET-POISSON EQUATIONS IN FINITE NETWORKS 23
2.3 DIRICHLET SEMI-NORM 32
2.4 SCHROEDINGER OPERATORS ON FINITE NETWORKS 34
3 HARMONIC FUNCTION THEORY ON INFINITE NETWORKS 45
3. 1 INFINITE NETWORKS AND THE LAPLACE OPERATOR 46
3.2 CLASSIFICATION OF INFINITE NETWORKS 52
3.2.1 HARMONIC MEASURE AT INFINITY OF A SECTION 54
3.2.2 POSITIVE HARMONIC FUNCTIONS ON A NETWORK 58
3.2.3 INTEGRAL REPRESENTATION OF POSITIVE HARMONIC FUNCTIONS 60 3.3
HYPERBOLIC NETWORKS 62
3.4 PARABOLIC NETWORKS 70
3.5 FLUX AT INFINITY 78
3.6 PSEUDO-POTENTIALS 87
4 SCHROEDINGER OPERATORS AND SUBORDINATE STRUCTURES ON INFINITE NETWORKS
91
4. 1 LOCAL PROPERTIES OF G-SUPERHARMONIC FUNCTIONS 92
4.2 CLASSIFICATION OF G-HARMONIC NETWORKS 101
4.3 SUBORDINATE STRUCTURES 103
BIBLIOGRAFISCHE INFORMATIONEN HTTP://D-NB.INFO/1011273594
DIGITALISIERT DURCH
IMAGE 2
X CONTENTS
5 POLYHARMONIC FUNCTIONS ON TREES 109
5.1 POLYHARMONIC FUNCTIONS ON INFINITE TREES ILL
5.2 POLYHARMONIC FUNCTIONS WITH POINT SINGULARITY 121
5.3 RIESZ-MARTIN REPRESENTATION FOR POSITIVE M-SUPERHARMONIC FUNCTIONS 1
29
REFERENCES 133
INDEX 139 |
any_adam_object | 1 |
author | Anandam, Victor |
author_facet | Anandam, Victor |
author_role | aut |
author_sort | Anandam, Victor |
author_variant | v a va |
building | Verbundindex |
bvnumber | BV039877940 |
classification_rvk | SK 750 |
ctrlnum | (OCoLC)731916170 (DE-599)DNB1011273594 |
dewey-full | 515.96 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.96 |
dewey-search | 515.96 |
dewey-sort | 3515.96 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 cb4500</leader><controlfield tag="001">BV039877940</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">120209s2011 |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">11,N18</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">11,A43</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">1011273594</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642213984</subfield><subfield code="c">kart. : EUR 37.40 (DE, freier Pr.)</subfield><subfield code="9">978-3-642-21398-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3642213987</subfield><subfield code="9">3-642-21398-7</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9783642213984</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">Best.-Nr.: 80063356</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)731916170</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB1011273594</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-19</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.96</subfield><subfield code="2">22/ger</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 750</subfield><subfield code="0">(DE-625)143254:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">510</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Anandam, Victor</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Harmonic functions and potentials on finite or infinite networks</subfield><subfield code="c">Victor Anandam</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin ; Heidelberg</subfield><subfield code="b">Springer</subfield><subfield code="c">2011</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">X, 141 S.</subfield><subfield code="c">24 cm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Lecture notes of the Unione Matematica Italiana</subfield><subfield code="v">12</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Literaturangaben</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Harmonische Funktion</subfield><subfield code="0">(DE-588)4159122-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Potenzialtheorie</subfield><subfield code="0">(DE-588)4046939-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Netzwerk</subfield><subfield code="g">Graphentheorie</subfield><subfield code="0">(DE-588)4705155-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Harmonische Funktion</subfield><subfield code="0">(DE-588)4159122-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Netzwerk</subfield><subfield code="g">Graphentheorie</subfield><subfield code="0">(DE-588)4705155-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Potenzialtheorie</subfield><subfield code="0">(DE-588)4046939-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="t">Harmonic Functions and Potentials on Finite or Infinite Networks</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Lecture notes of the Unione Matematica Italiana</subfield><subfield code="v">12</subfield><subfield code="w">(DE-604)BV022297190</subfield><subfield code="9">12</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">X:MVB</subfield><subfield code="q">text/html</subfield><subfield code="u">http://deposit.dnb.de/cgi-bin/dokserv?id=3719735&prov=M&dok_var=1&dok_ext=htm</subfield><subfield code="3">Inhaltstext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=024737128&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-024737128</subfield></datafield></record></collection> |
id | DE-604.BV039877940 |
illustrated | Not Illustrated |
indexdate | 2024-07-21T00:24:03Z |
institution | BVB |
isbn | 9783642213984 3642213987 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-024737128 |
oclc_num | 731916170 |
open_access_boolean | |
owner | DE-19 DE-BY-UBM |
owner_facet | DE-19 DE-BY-UBM |
physical | X, 141 S. 24 cm |
publishDate | 2011 |
publishDateSearch | 2011 |
publishDateSort | 2011 |
publisher | Springer |
record_format | marc |
series | Lecture notes of the Unione Matematica Italiana |
series2 | Lecture notes of the Unione Matematica Italiana |
spelling | Anandam, Victor Verfasser aut Harmonic functions and potentials on finite or infinite networks Victor Anandam Berlin ; Heidelberg Springer 2011 X, 141 S. 24 cm txt rdacontent n rdamedia nc rdacarrier Lecture notes of the Unione Matematica Italiana 12 Literaturangaben Harmonische Funktion (DE-588)4159122-7 gnd rswk-swf Potenzialtheorie (DE-588)4046939-6 gnd rswk-swf Netzwerk Graphentheorie (DE-588)4705155-3 gnd rswk-swf Harmonische Funktion (DE-588)4159122-7 s Netzwerk Graphentheorie (DE-588)4705155-3 s Potenzialtheorie (DE-588)4046939-6 s DE-604 Erscheint auch als Online-Ausgabe Harmonic Functions and Potentials on Finite or Infinite Networks Lecture notes of the Unione Matematica Italiana 12 (DE-604)BV022297190 12 X:MVB text/html http://deposit.dnb.de/cgi-bin/dokserv?id=3719735&prov=M&dok_var=1&dok_ext=htm Inhaltstext DNB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=024737128&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Anandam, Victor Harmonic functions and potentials on finite or infinite networks Lecture notes of the Unione Matematica Italiana Harmonische Funktion (DE-588)4159122-7 gnd Potenzialtheorie (DE-588)4046939-6 gnd Netzwerk Graphentheorie (DE-588)4705155-3 gnd |
subject_GND | (DE-588)4159122-7 (DE-588)4046939-6 (DE-588)4705155-3 |
title | Harmonic functions and potentials on finite or infinite networks |
title_auth | Harmonic functions and potentials on finite or infinite networks |
title_exact_search | Harmonic functions and potentials on finite or infinite networks |
title_full | Harmonic functions and potentials on finite or infinite networks Victor Anandam |
title_fullStr | Harmonic functions and potentials on finite or infinite networks Victor Anandam |
title_full_unstemmed | Harmonic functions and potentials on finite or infinite networks Victor Anandam |
title_short | Harmonic functions and potentials on finite or infinite networks |
title_sort | harmonic functions and potentials on finite or infinite networks |
topic | Harmonische Funktion (DE-588)4159122-7 gnd Potenzialtheorie (DE-588)4046939-6 gnd Netzwerk Graphentheorie (DE-588)4705155-3 gnd |
topic_facet | Harmonische Funktion Potenzialtheorie Netzwerk Graphentheorie |
url | http://deposit.dnb.de/cgi-bin/dokserv?id=3719735&prov=M&dok_var=1&dok_ext=htm http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=024737128&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV022297190 |
work_keys_str_mv | AT anandamvictor harmonicfunctionsandpotentialsonfiniteorinfinitenetworks |