Biophysical techniques:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Oxford [u.a.]
Oxford Univ. Press
2012
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | IX, 353 S. Ill., graph. Darst. |
ISBN: | 9780199642144 0199642141 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV039870551 | ||
003 | DE-604 | ||
005 | 20120717 | ||
007 | t | ||
008 | 120207s2012 ad|| |||| 00||| eng d | ||
016 | 7 | |a 015951266 |2 DE-101 | |
020 | |a 9780199642144 |c (pbk.) £34.99 |9 978-0-19-964214-4 | ||
020 | |a 0199642141 |c (pbk.) £34.99 |9 0-19-964214-1 | ||
035 | |a (OCoLC)757930885 | ||
035 | |a (DE-599)HBZHT017023925 | ||
040 | |a DE-604 |b ger | ||
041 | 0 | |a eng | |
049 | |a DE-355 |a DE-11 |a DE-703 |a DE-91G |a DE-29T |a DE-19 | ||
082 | 0 | |a 571.4 |2 23 | |
084 | |a WC 2050 |0 (DE-625)148068: |2 rvk | ||
084 | |a CHE 802f |2 stub | ||
100 | 1 | |a Campbell, Iain D. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Biophysical techniques |c Iain D. Campbell |
264 | 1 | |a Oxford [u.a.] |b Oxford Univ. Press |c 2012 | |
300 | |a IX, 353 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 0 | 7 | |a Biophysik |0 (DE-588)4006891-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Methode |0 (DE-588)4038971-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Biophysik |0 (DE-588)4006891-2 |D s |
689 | 0 | 1 | |a Methode |0 (DE-588)4038971-6 |D s |
689 | 0 | |C b |5 DE-604 | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=024729885&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-024729885 |
Datensatz im Suchindex
_version_ | 1804148811826724864 |
---|---|
adam_text | Titel: Biophysical techniques
Autor: Campbell, Iain D
Jahr: 2012
CONTENTS
Some frequently used abbreviations x Experimental 45
Some electrophoresis systems 46
3.5 Mass spectrometry 55
1 Introduction 1 Introduction 55
Ionization 55
Ion sorting/analysis 57
Applications of mass spectrometry 62
3.6 Electrophysiology 72
Introduction 72
Membrane potential 72
Action potentials 75
2 Molecular principles 5 Experimental 76
What are biophysical techniques ? 2
What questions can biophysical
techniques answer? 2
Which technique to use? 3
Organization of this book 3
2.1 Molecules and interactions 6
Introduction 6
Box 2.1 Atoms and elements 6
Propagation of an action potential
in a neuron 79
3.7 Calorimetry 84
. . . , , _ Introduction 84
Box2.2 Kinetic model oteases 7 .
b _ Isothermal titration calonmetry 84
Non-covalent interactions / _.. .. . . .
..,..,¦ Differential scanning calonmetry 87
Box 2.3 Electrostatics, dielectrics, and polarity 8 °
, , Box 3.2 Heat capacity 89
Box 2.4 Molecular biology tools and
base pairing 11
Binding 11
3 Transport and heat 17
4 Scattering, refraction, and diffraction 93
4.1 Scattering of radiation 95
Introduction 95
3.1 Diffusion, osmosis, viscosity, and friction 18 Scattering theory 96
Introduction 18 Box 4.1 Weight average molecular weight 97
Diffusion 18 Turbidity 97
Osmosis 19 Solution scattering and molecular shape 97
Application ofaforcetoa molecule in solution 21 Box 4.2 Radii of gyration, RG, and hydration, RH 98
Viscosity 21 Dynamic light scattering 103
Box 3.1 The frictional coefficient, /.depends Box 4.3 Correlation functions 103
on molecular shape
23 4.2 Refraction, evanescent waves.
3.2 Analytical centrifugauon 26 andplasmons 107
Introduction
26 Introduction 107
Some basic principles of sedimentation 26 Box 4.4 Classical optics 108
Sedimentation velocity
28 Evanescent waves 110
Sedimentation equilibrium 30 Surface plasmon resonance 111
Density gradient sedimentation 31 Box 4.5 The streptavidm/biotin complex 114
3.3 Chromatography
Introduction
Theory
36 4.3 Diffraction 119
36 Introduction 119
37 Principles of diffraction 119
Chromatography techniques 38 Box 4.6 Single particle imaging with X-ray laser 119
Quantitative chromatography
3.4 Electrophoresis
Introduction
Theory
40 Diffraction experiments 122
44 Interpretation of diffraction data 125
44 Other crystallography techniques 132
44 Achievements of crystallography 133
Contents
S Electronic and vibrational spectroscopy 139 Measurement 212
The spectral parameters in NMR 214
5.1 Introduction to absorption and
emission spectra 140
Introduction ! 4ü
Applications of NMR 223
Other NMR applications 236
,6.2 Electron paramagnetic resonance 243
Energy states 14o , , , .,,-,
6 , Introduction 243
Absorption !4i
, T Measurement 243
Box 5.1 Transition dipoie moments and
Spectral parameters /44
Box 6.2 îp nijDeis 246
Spectral anisotropy 24 /
Applications of EPR 248
transition probability 42
Emission i 44
Box 5.2 The laser Ms
5.2 Infrared and Raman spectroscopy 148
Introduction ! 43
IR spectra and applications 150 ? Microscopy and single molecule studies 257
Raman scattering 155 ?1 Mkfoscopy 258
Applications of Raman spectroscopy 157 introduction 258
5.3 UKraviolet/visible spectroscopy 162
Factors that influence resolution 259
Introductton 162 Bm7A Dlffrdctlon.lt(ls|lt 259
Measurement of electrons spectra 162 The optical mtcroscope 260
Electrons energy levels and transitas 163 The fluorescence microscope 262
Absorption properties of some E|ec|ron m,croscopy 266
keychromophores 164 Box 7.2 X-ray tomography 270
Applications of UV/visibte spectra 167 Box 7,3 The contrast transfer function (CTF) 272
Box 5.3 Isosbesttc points 169 The scanning electron microscope 273
Properties associated with the d.rection of the Scanning probe microscopy 275
transition dipoie moment 169
7.2 Manipulation and observation
Monitoring rap,d reactions 171 of single molecuies 279
5.4 Optical activity 176 mtroducr.on 279
Introduction 176 Manipulation by force 279
The phenomenon 176 Fluorescence methods 282
Measurement 177
Applications of CD spectra 178
5.5 Fluorescence 185 8 Computational biology 289
Introduction 185 8.1 Computational biology 290
Physical basis of fluorescence 185 Introduction 290
Measurement 186 Mathematical modeling of systems 290
Fluorophores 187 Bioinformatics 292
Environmental effects on fluorescence 188 Molecular modeling 296
Fluorescence anisotropy 191 e^g-, Force and potential energy 298
Förster resonance energy transfer (FRET) 193
Exploitation of fluorescence sensitivity 196
Box 5.4 Immunofluorescence 196
9 Tutorials 309
Box 5.5 Fluorescence in s/tu hybridization {FISH) 196 1 Biological molecules 310
Phosphorescence 197 2 Thermodynamics 312
5.6 X-ray spectroscopy 203 3 Motion and energy of particles in
Introduction 203 different force fields 314
Theory 203 4 Electrical circuits 317
Measurement 204 5 Mathematical representation of waves 318
Edge spectra 205 6 Fourier series, Fourier transforms,
EXAFS 205 and convolution 319
Analytical usesofX-rayemission 206 7 Oscillators and simple harmonic motion 321
8 Electromagnetic radiation 323
9 Quantum theory and the Schrödinger wave
6 Magnetic resonance 209 ^^ 325
6.1 Nuclear magnetic resonance 210 10 Atomic and molecular orbitals,
Introduction 210 their energy states, and transitions 327
Box6.1 Magnetism 210 11 Dipoles, dipole-dipole interactions,
The NMR phenomenon 210 and spectral effects 330
Contents
Appendices 332 A2.4 Logarithms, exponentials,
and trigonometric functions 333
A2.5 Calculus 333
A3 Basic statistics 334
Al Prefixes, units, and constants 332
A1.1 Prefixes 332
Al .2 Units 332
Al .3 Constants 332
A2 Some mathematical functions 332 Solutions to Problems 335
A2.1 Trigonometry 332
A2.2 Vectors 332
A2.3 Complex variables 333
Index 346
transition dipoie moment 169
Scanning probe microscopy
7.2 Manipulation and observation
Förster resonance energy transfer (FRET) 193
Exploitation of fluorescence sensitivity 196
Box 5.4 Immunofluorescence 196
6 Magnetic resonance 209
44
Spectral parameters
Box 6.2 Spin labels 246
Spectral anisotropy 24 7
Applications of EPR 248
Contents
5 Electronic and vibrational spectroscopy 139 Measurement 212
The spectral parameters in NMR 214
5.1 Introduction to absorption and Appl.cat.ons of NMR 223
emission spectra 140 other NMR applications 236
ln,roduct,on 140 6.2 Electron paramagnetic resonance 243
Energy states 140 ,ntroduction 243
AbsorPtion H1 Measurement 243
Box 5.1 Transition dipoie moments and
transition probability !42
Emission 144
Box 5.2 The laser 145
52 Infrared and Raman spectroscopy 148
Introduction 148
IR spectra and applications 150 ? Microscopy and single molecule studies 257
Raman scattering 155 7-, Mkroscopy 258
Applications of Raman spectroscopy 157 Introduction 258
53 Ultraviolet/visible spectroscopy 162 Factors that influence resolution 259
Introduction 162 g^-, Dlffractl0n at a 5|lt 259
Measurement of electronic spectra 162 The optical microscope 260
Electronic energy levels and transitions 163 The fluorescence microscope 262
Absorption properties of some E|ectron microscopy 266
keychromophores 164 to7.2 x-ray tomography 270
Applications of UV/visible spectra 167 Box 7.3 The contrast transfer function (CTF) 272
Box 5.3 Isosbestic points 169 The scanning electron microscope 273
Properties associated with the direction of the Scannine orobe microscoov 275
Monitoring rapid reactions 171 of single molecules 279
5.4 Optical activity 176 introduction 279
lntroduction 176 Manipulation by force 279
The phenomenon 176 Fluorescence methods 282
Measurement 177
Applications of CD spectra 178
5.5 Fluorescence 185 8 Computational biology 289
Introduction 185 8.1 Computational biology 290
Physical basis of fluorescence 185 Introduction 290
Measurement 186 Mathematical modeling of systems 290
Fluorophores 187 Bioinformatics 292
Environmental effects on fluorescence 188 Molecular modeling 296
Fluorescence anisotropy 191 ^g/i Force and potential energy 298
9 Tutorials 309
Box 5.5 Fluorescence in situ hybridization (FISH) 196 1 Biological molecules 310
Phosphorescence 197 2 Thermodynamics 312
5.6 X-ray spectroscopy 203 3 Motion and energy of particles in
Introduction 203 different force fields 314
Theory 203 4 Electrical circuits 317
Measurement 204 5 Mathematical representation of waves 318
Edge spectra 205 6 Fourier series, Fourier transforms,
EXAFS 205 and convolution 319
Analytical uses of X-ray emission 206 7 Oscillators and simple harmonic motion 321
8 Electromagnetic radiation 323
9 Quantum theory and the Schrödinger wave
equation 325
6.1 Nuclear magnetic resonance 210 10 Atomic and molecular orbitala.
Introduction 210 their energy states, and transitions 327
Box 6.1 Magnetism 210 11 Dipoles, dipole-dipole interactions.
The NMR phenomenon 210 and spectral effects 33°
PREFACE
Raymond Dwek and I wrote Biological Spectroscopy examples; readers can now find numerous up-to-date
nearly 30 years ago, now long out of print. Compie- specific examples related to their own interests by
tion of that project was mainly due to Raymond s using PubMed and other powerful search engines,
energy and drive. Competing demands for our time A selection of additional recent examples is, how-
meant that we did not find the energy to revise and ever, given in the online Journal Club supplement
update it in subsequent years. The available biophys- (see panel below). My main goal is to impart a basic
ical tools and techniques have, however, evolved and understanding of how the tools work, so that their
expanded in an astonishing way in recent decades, limitations and advantages can be appreciated. I hope
We can now see single molecules in living cells and practicing molecular biologists and students will
make high resolution movies of the ribosome in be able to gain useful insight into the wide array of
action. We have ready access to databases of genes powerful tools now available and how they can be
and sequences from many hundreds of organisms applied to their problems. This book aims to comple-
and over 70 000 sets of macromolecular coordinates, ment the excellent available molecular cell biology
Microscopy has been revolutionized and computers and biochemistry texts that describe the numerous
are now ubiquitous and extraordinarily powerful, exciting insights into biological molecules that have
I thus decided to write a new book with somewhat been obtained by applying biophysical tools,
different emphasis and scope to Biological Spectros- I have taught this subject for over 30 years and
copy. Some elements of the old are still discernible many students and colleagues have contributed to
and I will always be thankful to Raymond for his my enjoyable, educational journeys through the sub-
contributions to those. ject. My thanks go to them. Thanks too to Elspeth
My aim here is to emphasize the general principles Garman, Justin Benesch, Sandra Campbell, Michèle
and practicalities of a wide range of biophysical tech- Erat, Philip Fowler, Kate Heesom, Mark Howarth,
niques. I focus mostly on the analytical toolbox; this Nick Price, Jason Schnell, and David Staunton for
means that some production and preparative tech- their input. Jonathan Crowe of Oxford University
niques get less attention than they deserve. Space Press has also been particularly helpful and con-
limitations and the ready availability of alternative structive; those errors that remain are, of course,
sources also led me to give relatively few illustrative entirely my responsibility.
ywWÄOxfordtextbooks,co.uk/orc/campbell/
The Online Resource Centre to accompany Biophysical Techniques includes:
• figures from the book in electronic format, ready to download;
• a series of Journal Clubs-discussion questions, perfect for seminar or tutorial use, built around a selection of journal
articles that build on and augment topics covered in the book.
Register for lecturer access by visiting the URL given above.
CONTENTS
Some frequently used abbreviations x Experimental 45
Some electrophoresis systems 46
3.5 Mass spectrometry 55
1 Introduction 1 Introduction 55
Ionization 55
Ion sorting/analysis 57
Applications of mass spectrometry 62
3.6 Electrophysiology 72
Introduction 72
Membrane potential 72
Action potentials 75
2 Molecular principles 5 Experimental 76
What are biophysical techniques ? 2
What questions can biophysical
techniques answer? 2
Which technique to use? 3
Organization of this book 3
2.1 Molecules and interactions 6
Introduction 6
Box 2.1 Atoms and elements 6
Box 2.2 Kinetic model of gases 7
Non-covalent interactions 7
Box 2.3 Electrostatics, dielectrics, and polarity 8
Box 2.4 Molecular biology tools and
base pairing 11
Binding 11
3 Transport and heat 17
Propagation of an action potential
in a neuron 79
3.7 Calonmetry 84
Introduction 84
Isothermal titration calonmetry 84
Differential scanning calorimetry 87
Box 3.2 Heat capacity 89
4 Scattering, refraction, and diffraction 93
4.1 Scattering of radiation 95
Introduction 95
3.1 Diffusion, osmosis, viscosity, and friction 18 Scattering theory 96
Introduction 18 Box 4.1 Weight average molecular weight 97
Diffusion 18 Turbidity 97
Osmosis 19 Solution scattering and molecular shape 97
Application ofa force to a molecule in solution 21 Box 4.2 Radii of gyration, RG, and hydration, RH 98
Viscosity 21 Dynamic light scattering 103
Box 3.1 The frictional coefficient, f, depends Box 4.3 Correlation functions 103
on molecular shape 23 4.2 Refraction, evanescent waves,
3.2 Analytical centrifugation 26 and plasmóos 107
Introduction 26 Introduction 107
Some basic principles of sedimentation 26 Box 4.4 Classical optics 108
Sedimentation velocity 28 Evanescent waves 110
Sedimentation equilibrium 30 Surface plasmon resonance 111
Density gradient sedimentation 31 Box 4.5 The streptavidin/biotin complex 114
3.3 Chromatography 36 4.3 Diffraction 119
Introduction 36 Introduction 119
Theory 37 Principles of diffraction 119
Chromatography techniques 38 Box 4.6 Single particle imaging with X-ray laser 119
Quantitative chromatography 40 Diffraction experiments 122
3.4 Electrophoresis 44 Interpretation of diffraction daU 125
Introduction 44 Other crystallography techniques 132
Theory 44 Achievements of crystallography 133
Contents
5 Electronic and vibrational spectroscopy 139 Measurement 212
The spectral parameters in NMR 214
5.1 Introductiontoabsorptionand Applications of NMR 223
emission spectra 140 other NMR applications 236
Introducwon 40 fi2 E|ectron paramagnetic resonance 243
Energystates 40 lntroduction 243
AbsorPt,on J 141 Measurement 243
Box 5.1 Transition dipoie moments and Spectral parameters 244
transition probability 142 Box 6.2 Spin labels 246
Emission 144
Spectral anisotropy 247
Applications of EPR 248
Box 5.2 The laser 145
5.2 Infrared and Raman spectroscopy 148
Introduction 148
IR spectra and applications 150 7 Microscopy and single molecule studies 257
Raman scattering 155 71 Microscopy 258
Applications of Raman spectroscopy 157 Introduction 258
5.3 Ultraviolet/visible spectroscopy 162 Factors that influence resolution 259
Introduction 162
Box 7.1 Diffraction at a slit 259
Measurement of electronic spectra 162 The optical microscope 260
Electronic energy levels and transitions 163 The fluorescence microscope 262
Absorption properties of some Electron microscopy 266
keychromophores 164 Box72 X-raytomography 270
ApplkationsofUV/visiblespectra 167 Box73 The contrast transfer function (CTF) 272
Bco.5.3 lsosbest,c points 169 The scanning electron microscope 273
Properties associated with the direction of the Scanning probe microscopy 275
transrt.ond.pole moment 169 72 Manipulation and observation
Monitoring rapid reactions 171 of single molecules 279
5.4 Optical activity 176 introduction 279
lntroduct.on 176 Manipulation by force 279
The phenomenon 176 Fluorescence methods 282
Measurement 177
Applications of CD spectra 178
5.5 Fluorescence 185 8 Computational biology 289
Introduction 185 g.! Computational biology 290
Physical basis of fluorescence 185 Introduction 290
Measurement 186 Mathematical modeling of systems 290
Fluorophores 187 Bioinformatics 292
Environmental effects on fluorescence 188 Molecular modeling 2%
Fluorescence anisotropy 191 Box8.1 Force and potential energy 298
Forster resonance energy transfer (FRET) 193
Exploitation of fluorescence sensitivity 1 %
Box 5.4 Immunofluorescence 196
9 Tutorials 309
Box 5.5 Fluorescence in situ hybridization (FISH) 196 1 Biological molecules 310
Phosphorescence 197 2 Thermodynamics 312
S.6 X-ray spectroscopy 203 3 Motion and energy of particles m
Introduction 203 different force fields 314
Theory 203 4 Electrical circuits 317
Measurement 204 5 Mathematical representation of waves 318
Edge spectra 205 6 Fourier series, Fourier transforms,
EXAFS 205 and convolution 319
Analytical uses of X-ray emission 206 7 Oscillators and simple harmonic motion 321
8 Electromagnetic radiation 323
6 Magnetic resonance 209
9 Quantum theory and the Schrödinger wave
equation 325
6.1 Nuclear magnetic resonance 210 10 Atomic and molecular orbnals,
Introduction 210 their energy states, and transitions 327
Box 6.1 Magnetism 210 11 Chpotes, dtpote-dipole interactions.
The NMR phenomenon 210 and spectral effects 330
Contents
Appendices 332 A2.4 Logarithms, exponentials,
and trigonometric functions 333
A2.5 Calculus 333
A3 task statistics 334
Al Prefixes, units, and constants 332
A1.1 Prefixes 332
Al .2 Units 332
Al .3 Constants 332
A2 Some mathematical functions 332 Solutions to Problemi 33S
A2.1 Trigonometry 332
A2.2 Vectors 33?
A2.3 Complex variables 333
Index 34«
|
any_adam_object | 1 |
author | Campbell, Iain D. |
author_facet | Campbell, Iain D. |
author_role | aut |
author_sort | Campbell, Iain D. |
author_variant | i d c id idc |
building | Verbundindex |
bvnumber | BV039870551 |
classification_rvk | WC 2050 |
classification_tum | CHE 802f |
ctrlnum | (OCoLC)757930885 (DE-599)HBZHT017023925 |
dewey-full | 571.4 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 571 - Physiology & related subjects |
dewey-raw | 571.4 |
dewey-search | 571.4 |
dewey-sort | 3571.4 |
dewey-tens | 570 - Biology |
discipline | Biologie Chemie |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01444nam a2200385 c 4500</leader><controlfield tag="001">BV039870551</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20120717 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">120207s2012 ad|| |||| 00||| eng d</controlfield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">015951266</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780199642144</subfield><subfield code="c">(pbk.) £34.99</subfield><subfield code="9">978-0-19-964214-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0199642141</subfield><subfield code="c">(pbk.) £34.99</subfield><subfield code="9">0-19-964214-1</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)757930885</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)HBZHT017023925</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-355</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-19</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">571.4</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">WC 2050</subfield><subfield code="0">(DE-625)148068:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">CHE 802f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Campbell, Iain D.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Biophysical techniques</subfield><subfield code="c">Iain D. Campbell</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Oxford [u.a.]</subfield><subfield code="b">Oxford Univ. Press</subfield><subfield code="c">2012</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">IX, 353 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Biophysik</subfield><subfield code="0">(DE-588)4006891-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Methode</subfield><subfield code="0">(DE-588)4038971-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Biophysik</subfield><subfield code="0">(DE-588)4006891-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Methode</subfield><subfield code="0">(DE-588)4038971-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="C">b</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=024729885&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-024729885</subfield></datafield></record></collection> |
id | DE-604.BV039870551 |
illustrated | Illustrated |
indexdate | 2024-07-10T00:13:04Z |
institution | BVB |
isbn | 9780199642144 0199642141 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-024729885 |
oclc_num | 757930885 |
open_access_boolean | |
owner | DE-355 DE-BY-UBR DE-11 DE-703 DE-91G DE-BY-TUM DE-29T DE-19 DE-BY-UBM |
owner_facet | DE-355 DE-BY-UBR DE-11 DE-703 DE-91G DE-BY-TUM DE-29T DE-19 DE-BY-UBM |
physical | IX, 353 S. Ill., graph. Darst. |
publishDate | 2012 |
publishDateSearch | 2012 |
publishDateSort | 2012 |
publisher | Oxford Univ. Press |
record_format | marc |
spelling | Campbell, Iain D. Verfasser aut Biophysical techniques Iain D. Campbell Oxford [u.a.] Oxford Univ. Press 2012 IX, 353 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Biophysik (DE-588)4006891-2 gnd rswk-swf Methode (DE-588)4038971-6 gnd rswk-swf Biophysik (DE-588)4006891-2 s Methode (DE-588)4038971-6 s b DE-604 HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=024729885&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Campbell, Iain D. Biophysical techniques Biophysik (DE-588)4006891-2 gnd Methode (DE-588)4038971-6 gnd |
subject_GND | (DE-588)4006891-2 (DE-588)4038971-6 |
title | Biophysical techniques |
title_auth | Biophysical techniques |
title_exact_search | Biophysical techniques |
title_full | Biophysical techniques Iain D. Campbell |
title_fullStr | Biophysical techniques Iain D. Campbell |
title_full_unstemmed | Biophysical techniques Iain D. Campbell |
title_short | Biophysical techniques |
title_sort | biophysical techniques |
topic | Biophysik (DE-588)4006891-2 gnd Methode (DE-588)4038971-6 gnd |
topic_facet | Biophysik Methode |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=024729885&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT campbelliaind biophysicaltechniques |