Green chemistry for environmental remediation:
Gespeichert in:
Format: | Buch |
---|---|
Sprache: | English |
Veröffentlicht: |
Salem, Mass. [u.a.]
Scrivener Pub. [u.a.]
2012
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis Klappentext |
Beschreibung: | Includes bibliographical references and index |
Beschreibung: | XXI, 776 S. Ill., graph. Darst. |
ISBN: | 9780470943083 |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV039869981 | ||
003 | DE-604 | ||
005 | 20120716 | ||
007 | t | ||
008 | 120206s2012 xxuad|| |||| 00||| eng d | ||
010 | |a 2011040428 | ||
020 | |a 9780470943083 |c cloth |9 978-0-470-94308-3 | ||
035 | |a (OCoLC)714716004 | ||
035 | |a (DE-599)BVBBV039869981 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
044 | |a xxu |c US | ||
049 | |a DE-29T |a DE-703 |a DE-634 | ||
050 | 0 | |a TP155.2.E58 | |
082 | 0 | |a 577/.14 | |
084 | |a VN 9200 |0 (DE-625)147637:253 |2 rvk | ||
245 | 1 | 0 | |a Green chemistry for environmental remediation |c ed. by Rashmi Sanghi ... |
264 | 1 | |a Salem, Mass. [u.a.] |b Scrivener Pub. [u.a.] |c 2012 | |
300 | |a XXI, 776 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
500 | |a Includes bibliographical references and index | ||
650 | 4 | |a Nachhaltigkeit | |
650 | 4 | |a Umweltschutz | |
650 | 4 | |a Environmental chemistry |x Industrial applications | |
650 | 4 | |a Sustainable development | |
650 | 4 | |a Environmental protection | |
650 | 0 | 7 | |a Grüne Chemie |0 (DE-588)7563215-9 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Grüne Chemie |0 (DE-588)7563215-9 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Sanghi, Rashmi |e Sonstige |4 oth | |
856 | 4 | 2 | |m Digitalisierung UB Bayreuth |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=024729329&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
856 | 4 | 2 | |m Digitalisierung UB Bayreuth |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=024729329&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |3 Klappentext |
999 | |a oai:aleph.bib-bvb.de:BVB01-024729329 |
Datensatz im Suchindex
_version_ | 1804148811035049984 |
---|---|
adam_text | Contents
Foreword by Robert Peoples
xix
PART
1
Green Chemistry and Societal
Sustainability
1
1.
Environment and the Role of Green Chemistry
3
Rashmi Sanghi, Vandana Singh and Sanjay K. Sharma
1.1
The Environmental Concern
3
1.2
The Role of Chemistry
5
1.3
Sustainable Development
7
1.4
Era of Green Chemistry
8
1.4.1
Twelve Principles of Green Chemistry
[1] 10
1.4.2
Objectives of Green Chemistry
11
1.4.3
Views of Green Chemistry Experts
12
1.4.4
Concepts Related to Green Chemistry:
Cause of Confusion
17
1.4.5
International Initiatives for Green Chemistry
Awareness
18
1.5
Concluding Remarks
29
Acknowledgement
30
References
30
Suggested Reading: Some Books on Green Chemistry
32
Useful Resources for Green Chemistry
and their Links
33
2.
The Greening of the Chemical Industry: Past, Present
and Challenges Ahead 35
Fernando J. Diaz Lopez and Carlos Montalvo
2.1
Introduction
36
2.2
From Greening Technologies to Greening
the Economy
38
vi
Contents
2.3
A
Brief Note on
Business
Strategy
and Corporate Greening
44
2.4
The Past: An Account of the Historical Relationship
Between the Chemical
Industry and the Environment
46
2.5
The Present: From Pollution Control to Corporate
Environmental Sustainability
51
2.6
The Future: Environmentally Sustainable
Manufacturing and Eco-innovation
64
2.7
Conclusion: Greening or Sustainability
in Chemical Manufacturing?
69
References
71
3.
Designing Sustainable Chemical Synthesis:
The Influence of Chemistry on Process Design
79
Laura A. Anderson and Michael A. Gonzalez
3.1
Introduction
79
3.2
Green Chemistry
83
3.3
Green Engineering
85
3.4
Sustainability Metrics
88
3.5
Designing a Sustainable Process
89
3.6
Merck Case Study
100
3.7
Conclusion
103
References
104
4.
Green Chemical Processing in the Teaching
Laboratory: Microwave Extraction
of Natural Products
107
S.
Verino-Issar
tier,
F. Visinoni, F.
Chemat
4.1
Introduction
107
4.2
Microwave versus Conventional Heating
110
4.3
Experimental 111
4.3.1
Hydrodistillation
(HD)
Procedure 111
4.3.2
Microwave
Hydrodiffusion
and Gravity
Procedure
112
4.3.3
Analysis of Essential Oil
113
4.4
Advantages
114
4.4.1
Green Production Rapidity
114
4.4.2
Green Production Efficiency
115
4.4.3
Green Production Courses
115
4.4.4
Green Production Messages
116
4.4.5
Safety Considerations
116
5.
Contents
vii
4.5
Conclusion
117
Acknowledgements
118
References
118
Ensuring Sustainability through Microscale
Chemistry
119
Norita
Mohamed, Mashita
Abdullah
and Zurida Ismail
5.1
Introduction to Microscale Chemistry
120
5.2
Development of Microscale Chemistry Experiments
for Upper Secondary Schools
122
5.2.1
Microscale Chemistry Experiments
122
5.2.2
Cost-benefit Analysis
128
5.3
Teachers Evaluation
130
5.3.1
Workshops
130
5.3.2
Focused Group Discussions
130
5.4
Students Feedback
131
5.4.1
Analyses of Open Comments
from Students
131
5.4.2
Interviews
132
5.5
Conclusion
134
References
135
6.
Capability Development and Technology Transfer
Essential for Economic Transformation
137
Surya Pandey and
Amit
Pandey
6.1
Introduction
138
6.2
The Importance of R&D
138
6.2.1
Research and Development
Expenditure
141
6.3
Knowledge Creation and Technology Transfer
145
6.3.1
Development of an RDT Voucher
System
146
6.3.2
External Engagement
146
6.3.3
Organizational RDT Planning
147
6.3.4
Structural Changes
148
6.4
Technology Transfer Future
148
6.5
Applications to Green Chemistry
149
6.6
Conclusions
150
Acknowledgements
150
References
151
viii
Contents
PART
2
Green Lab Technologies
153
7.
Ultrasound Cavitation as a Green Processing Technique
in the Design and Manufacture of Pharmaceutical
Nanoemulsions in Drug Delivery System
155
Siah
Ying Tang, Khang Wei Tan
and Manickam Sivakumar
7.1
Introduction
156
7.2
Types of Emulsion and Principles
of Nanoemulsion Formation
157
7.3
Formulation Aspects of Nanoemulsion
159
7.4
The Ultrasonic Domain
160
7.5
What is Ultrasound Cavitation?
163
7.6
Ultrasound Generation
166
7.7
Principle and Operation of Ultrasound
Emulsification
167
7.8
Types of Ultrasound Emulsification: Batch and
Dynamic Systems
170
7.9
Advantages of Ultrasound Emulsification
171
7.10
General Reviews of Ultrasound Emulsification
173
7.11
Nanoemulsion in Pharmaceutical Application
180
7.12
Characterization of Nanoemulsion
Drug Delivery System
184
7.12.1
Particle Surface Morphology and Size
Distribution
184
7.12.2
Solubility Enhancement
187
7.12.3
Drug Encapsulation and Loading
Efficiency
188
7.12.4
Drug Release
189
7.12.5
Ultrasonic-mediated Drug Release
190
7.12.6
Site Specific Drug Targeting
193
7.12.7
Stability
194
7.13
Practical and Potential Applications of Nanoemulsion
in Different Administration Routes
194
7.13.1
Parenteral Drug Delivery
195
7.13.2
Oral Drug Delivery
196
7.13.3
Topical Drug Delivery
199
7.14
Conclusion
200
Acknowledgement
201
References
201
Contents
ix
8.
Microwave-Enhanced Methods for
Biodiesel
Production and Other Environmental Applications
209
Veera Gnaneswar
Gude,
Praţulla
D.
Patii,
Shuguang Deng, Nirmalakhandan
8.1
Introduction
210
8.2
Microwave Energy
212
8.2.1
Microwave Energy as a Heat Source
212
8.2.2
Microwave-Enhanced
Biodiesel
Synthesis
215
8.3
Biodiesel
Production Using Different
Feedstock
218
8.3.1
Biodiesel
Production from Edible and
Non-edible Oils
218
8.3.2
Biodiesel
Production from Algae
221
8.4
Energy Consumption
229
8.4.1
Kinetics Study
231
8.4.2
Comparison Between Supercritical and
Microwave Assisted Algal
Biodiesel
Production
233
8.5
Analysis of Algal Biomass and
Biodiesel
235
8.5.1
ТЕМ
Analysis of Algal Biomass
235
8.5.2
GC-MS Analysis of Algal
Biodiesel
from Wet Algae
236
8.5.3
TLC
Analysis of Algal
Biodiesel
from Dry Algae
237
8.6
Current Status of the Microwave Technology for
Large Scale
Biodiesel
Production
238
8.7
Other Microwave-enhanced Applications
240
8.7.1
Microwave Applications in
Organic Synthesis
240
8.7.2
Microwave Applications for Green
Environment
242
8.8
Summary
244
References
246
9.
Emergence of Base Catalysts for Synthesis of
Biodiesel
251
В.
Singh,
S.N.
Upadhyay, Dinesh Mohan,
Y.C. Sharma
9.1
Introduction
252
9.2
Mechanism of Heterogeneous Catalysis
252
χ
Contents
9.3
Calcium Oxide and Magnesium Oxide
253
9.4
Hydrotalcite Doped Compounds
260
9.5
Alumina Loaded Compounds
269
9.6
Zeolite
278
9.7
Conclusions
284
Acknowledgement
286
References
286
10. Hydrothermal
Technologies for the Production
of Fuels and Chemicals from Biomass
291
D.W.
Rackemann, L. Moghaddam, T.J. Rainey,
CF.
Fellows,
P.A.
Hobson and W.O.S. Doherty
10.1
Introduction
292
10.2
Thermochemical Processes for Biomass
295
10.2.1
Gasification
298
10.2.2
Pyrolysis
300
10.2.3
Direct Liquefaction
304
10.3
Green Chemistry and
Hydrothermal
Liquefaction
315
10.3.1
Upgrading
Biocrude
Oils
317
10.4
Hydro-Deoxygenation Upgrading
318
10.5
Zeolite Upgrading
320
10.5.1
Zeolite Upgrading of Pyrolysis
Bio-oils
321
10.5.2
Zeolite Upgrading of Liquefaction
Biocrude
323
10.5.3
Bio-oil Emulsification
323
10.5.4
Steam Reforming Bio-oil
324
10.5.5
HTU® technology
327
10.5.6
Thermal Depolymerization Process (TDP)
Technology
332
10.6
Conclusions
336
References
338
11.
Ionic Liquids in Green Chemistry
-
Prediction of Ionic Liquids
Toxicity
Using
Different Models
343
Raquel
F. M.
Frade
11.1
Introduction
343
11.1.1
Ionic Liquids
343
11.1.2
Ionic Liquids: Applications
345
Contents
xi
11.1.3
Ionic Liquid
Toxicity
346
11.2
Conclusions
352
References
352
12.
Nano-catalyst: A Second Generation Tool for Green
Chemistry
357
Archna Rani, Sapna fain and Sanjay K. Sharma
12.1
Introduction
358
12.2
Nanocatalyst: An Origin of a Green Concept
358
12.3
Recent Advances in Nanocatalysis
361
12.3.1
Synthesis of Nano-catalysts
361
12.3.2
Applications
363
12.4
Challenges and Future Scope
369
12.5
Conclusion
370
Acknowledgements
370
References
370
13.
Green Polymer Synthesis: An Overview on Use of
Microwave-Irradiation
379
Anuradha Mishra, Rashmi Dubey
13.1
Introduction
380
13.2
Radical Polymerization
385
13.2.1
Free Radical Homopolymerization
386
13.2.2
Free Radical Copolymerizations
387
13.2.3
Synthesis of Composites by Free Radical
Polymerization
390
13.2.4
Emulsion Polymerization
391
13.2.5
Controlled Radical Polymerization
392
13.3
Step Growth Polymerization
394
13.3.1
Synthesis of Poly(amide)s
395
13.3.2
Synthesis of Poly(imide)s
397
13.3.3
Synthesis of Poly(ether)s
398
13.3.4
Synthesis of Poly(ester)s
398
13.3.5
Synthesis of Poly(urea)s and
Poly(urethane)s
399
13.3.6
Synthesis of Poly(anhydride)s
400
13.3.7
Synthesis of Poly(amide-imide)s,
Poly (amide-ester)s, Poly(ether-ester)s,
Poly(ester-imide)s, Poly (ether-imide)s,
Polyiamino-quinone) and other
Polycondensation Reactions
400
13.3.8
Copolymerization
402
xii
Contents
13.4
Ring Opening Polymerization
402
13.4.1
Ring Opening Polymerization of
Cyclic Esters
403
13.4.2
Enzyme Catalyzed Ring Opening
Polymerization
405
13.4.3
Cationic/Anionic Ring
Opening Polymerizations
406
13.4.4
Ring Opening Copolymerization
407
13.5
Polymer Modifications
409
13.5.1
Polymer Crosslinking/Curing
410
13.5.2
Formation of
Hydrogels
411
13.5.3
Polymer Composites
412
13.5.4
Processing of Polymeric Scaffolds
and Particles
413
13.5.5
Polymer Blends
414
13.6
Miscellaneous Polymer Synthesis
414
13.6.1
Syntheses of Polypeptides
415
13.7
Conclusions and Perspectives
415
References
417
PART3
Green Bio-energy Sources
425
14.
Bioenergy as a Green Technology Frontier
427
Laura B. Brentner
14.1
Introduction
427
14.2
Bioenergy Life Cycles
431
14.2.1
Land-use Changes
431
14.2.2
Resource Demand (other inputs)
432
14.2.3
Process Contribution to Energy Demand
(fossil fuel inputs)
434
14.3
Transportation Biofuels
435
14.3.1
Oil Crops for
Biodiesel
435
14.3.2
Carbohydrate Crops for
Ethanol
438
14.4
Thermochemical Conversion of Biomass
440
14.5
Biogas
442
14.5.1
Anaerobic Digestion and Methane
Production
442
14.5.2
Biohydrogen
442
Contents
xiii
14.6
Microbial Fuel Cells
443
14.7
Future Prospects
444
References
446
15.
Biofuels as Suitable Replacement
for Fossil Fuels
451
Juan Carlos Serrano-Ruiz, Juan Manuel
Campeio,
Rafael Luque, Antonio A. Romero
15.1
Introduction
451
15.2
Types of Biofuels and Technologies
for their Production
454
15.2.1
Biodiesel
455
15.2.2
Bioalcohols
459
15.2.3
Biogas
and Biohydrogen
462
15.2.4
Liquid Hydrocarbon
Fuels (LHF)
463
15.3
Future Prospects and Conclusions
473
Acknowledgments
473
References
474
16.
Biocatalysts for Greener Solutions
479
U. Lakshmishri, Rintu
Baner
jee
ana Surya
Pandey
16.1
Introduction
479
16.1.1
Challenges Facing Green Chemistry
481
16.2
Enzyme-Biocatalysts in Green Chemistry
482
16.2.1
Classification of Enzymes
482
16.2.2
General Applications of Enzymes
484
16.3
Utilization of Enzymes as Tools for
Providing Greener Solutions
485
16.3.1
Paper and Pulp Industry
485
16.3.2
Textile Industry
486
16.3.3
Petrochemical Industry
488
16.3.4
Enzymes for Bioremediation
of Persistent Organic Contaminants
491
16.3.5
Enzymes in the Pharmaceutical
Industry
494
16.3.6
Tannery
496
xiv
Contents
16.4
Conclusion
501
References
502
17.
Lignocellulosics as a Renewable Feedstock
for Chemical Industry: Chemical Hydrolysis and
Pretreatment
Processes
505
Ian M. O Hara, Zhanying Zhang,
William
O.S.
Doherty and Christopher M. Fellows
17.1
Introduction
505
17.2
Lignocellulosic Biomass Structure
507
17.2.1
Cellulose
508
17.2.2
Hemicellulose
509
17.2.3
Lignin
510
17.3
Biomass Hydrolysis Processes
511
17.3.1
Concentrated Acid Hydrolysis
512
17.3.2
Dilute Acid Hydrolysis
513
17.3.3
Solid Acid Catalysts
515
17.4
Biomass
Pretreatment
Processes
518
17.4.1
Chemical
Pretreatment
519
17.4.2
Physico-chemical Processes
531
17.4.3
Physical
Pretreatment
Processes
537
17.4.4
Biological
Pretreatment
Processes
540
17.5
Conclusions
543
References
547
18.
Lignocellulosics as a Renewable Feedstock
for Chemical Industry: Chemicals from
Lignin
561
Christopher
M.
Fellows, Trevor C. Brown
and
1
William
O.S.
Doherty
18.1
Introduction
561
18.2
Lignin
Structure
562
18.3
Lignin
Isolation
565
18.4
Lignin
as a Macromolecular Raw Material
567
18.5
Depolymerisation/Valorisation of
Lignin
570
18.5.1
Pyrolysis
572
18.5.2
Hydrogenolysis
577
18.5.3
Hydrolysis
580
18.5.4
Oxidation
583
18.5.5
Post-depolymerisation
Deoxygenation
586
18.5.6
Enzymatic Depolymerisation
588
Contents
xv
18.6
Conclusions
589
References
591
19.
Genome Enabled Technologies
in Green Chemistry
611
Puja
Ravikumar and
R K
Singh
19.1
Introduction
612
19.2
Microbial Communities
-
Teamwork in Bioremediation
613
19.3
Genome Sequencing
615
19.4
Metagenomics
616
19.4.1
Limitations of Metagenomic
Libraries
619
19.5
Microbial Microarrays- Genome Wide
Expression Studies
620
19.6
Future Prospects
623
References
624
PART
4
Green Solutions for Remediation
627
20.
Green Biotechnology for Municipal and Industrial
Wastewater Treatment
629
Balasubramanian S., R.D. Tyagi, R.Y. Surampalli,
and
Tian C.
Zhang
20.1
Introduction
630
20.2
Green Biotechnology
631
20.3
Need for Efficient/Green Biotechnology for
WWT Processes
632
20.4
Application of Green Biotechnology in
WWT Processes
633
20.4.1
Nutrient Removal (Phosphorus)
634
20.4.2
Foam Control from Activated Sludge
Processes
634
20.4.3
Green Biotechnology to Improve Sludge
Dewatering
635
20.4.4
Green Biotechnology to Improve Sludge
(Aerobic and Anaerobic) Digestion
636
20.4.5
Green Biotechnology to Control
Pathogens in Wastewater Sludge
637
20.5
Bioconversion
of Wastewater Sludge to Value
Added Products
638
xvi
Contents
20.5.1
Bioenzymes
(Laccases, Degradative
Enzymes and Proteases) Production
638
20.5.2
Bioethanol and
Biodiesel
Production
643
20.5.3
Bio-fertilizer
646
20.5.4
Bioflocculants/Biopolymers
647
20.5.5
Bio-pesticides
651
20.5.6
Bio-plastics
652
20.6
Research/Development Needs and
Future Prospects
655
20.7
Conclusions
655
Acknowledgement
655
References
655
21.
Phytoremediation of Cadmium: A Green
Approach
661
Ackmez Mudhoo
21.1
The Environmental Pollution Concern
662
21.2
Essentials of Bioremediation
662
21.3
Principles of Phytoremediation
663
21.3.1
Definition and Characterisitics
of Phytoremediation
664
21.3.2
Main Types of Phytoremediation
665
21.3.3
Plant-Microbial Interactions During
Phytoremediation
667
21.4
Cadmium: Properties,
Toxicity
and Occurence
668
21.4.1
Basic Properties of Cadmium
668
21.4.2
Cadmium
Toxicity
669
21.4.3
Cadmium Occurrence
669
21.5
Phytoremediation of Cadmium
670
21.5.1
Phytoremediation of Cadmium
in Contaminated Soils
671
21.5.2
Phytoremediation of Cadmium
in Aqueous Media
676
21.5.3
Cadmium Hyperaccumulators
677
21.5.4
Chelating Agents in Cadmium
Phytoremediation
684
21.6
Cadmium Phtoremediation
and Genetic Engineering
688
Contents
xvii
Acknowledgement
694
References
694
22.
A Closer Look at Green Glass: Remediation with
Organosilica Sol-Gels Through the Application
of Green Chemistry
699
Sarah B.
Lockwood
and
Bakul
С.
Dave
22.1
Introduction
699
22.2
Green Chemistry and the Sol-Gel
Materials
700
22.3
Organosilica Sol-Gels
704
22.3.1
Properties of Organosilica Sol-Gels
706
22.3.2
Organosilica Sol-Gels
—
Benign
by Design
710
22.3.3
Remediation Strategies with
Organosilica Sol-Gel
710
22.3.4
Selective Adsorption
712
22.3.5
Binding and Catalysis
714
22.4
Green Chemistry with Glasses—The Green side
of Organosilica Sol-Gels
714
22.4.1
Environmental Remediation
715
22.4.2
Removal of Cationic Species
715
22.4.3
Removal of
Anionie
Species
716
22.4.4
Removal of Neutral Species
716
22.4.5
Binding and Reduction of
Chromâtes
716
22.4.6
Remediation of Greenhouse Gas Via
Conversion to
Methanol
718
22.5
Green Chemistry and The Potential Impact
of Organosilica Sol-Gels
720
22.6
Conclusions and Future
Perspectives
725
References
726
23.
Modification and Applications of Guar Gum
in the Field of Green Chemistry
729
Sagar Pal, Sk. A. AH, G. Sen, R. P. Singh
23.1
Introduction
729
23.2
Experimental
735
23.2.1
Materials
735
23.2.2
Synthesis
736
xviii
Contents
23.3
Applications
742
23.3.1
Flocculation
742
23.3.2
Drag Reduction
750
23.3.3
Rheology
755
23.4
Conclusion
757
Acknowledgement
757
References
757
Index
763
The book explains the importance of chemistry in solving environmental issues by
highlighting the role green chemistry plays in making the environment clean and green
by covering a wide array of topics ranging from sustainable development, microwave
chemical reaction, renewable feedstocks, microbial bioremediation, and other topics that,
when implemented, will advance environmental improvement.
Green Chemistry for Environmental Remediation provides insight on how educators from
around the world have incorporated green chemistry into their classrooms and how the
principles of green chemistry can be integrated into the curriculum.
The volume presents high-quality research papers as well as in-depth review articles from
eminent professors, scientists, chemists, and engineers both from educational institutions
and from industry. It introduces a new emerging green face of multidimensional
environmental chemistry. Each chapter brings forward the latest literature and research
being done in the related area.
The
23
chapters are divided into
4
sections:
1.
Green chemistry and societal sustainability including teaching and education of
green chemistry
2.
Green lab technologies and alternative solutions to conventional laboratory
techniques
3.
Green bio-energy sources as green technology frontiers
4.
Green applications and solutions for remediation
Green Chemistry for Environmental Remediation is an important resource for academic
researchers, students, faculty, industrial chemists, chemical engineers, environmentalists,
and anyone interested in environmental policy safeguarding the environment. Relevant
industries include those in clean technology, renewable energy, biotechnology,
pharmaceutical, and chemicals. Another goal of the book is to promote and generate
awareness about the relationship of green chemistry with the environment amongst the
younger generation who might wish to pursue a career in green chemistry.
Rashmi Sanghi received her PhD from the University of Allahabad, India, in
1994.
She is currently a consultant at the Indian Institute of Technology, Kanpur. Her major
research interests are environmental green chemistry specializing in microbial and
nanoparticle research. She has over
80
international journal publications, two patents,
and two books on green chemistry to her credit.
Vandana Singh received her PhD from the University of Allahabad, India, in
1986.
She is currently an associate professor in the Department of Chemistry, University
of Allahabad. Her research interests are in polysaccharides, polymers, and polymer
composites. She has over
70
international journal publications as well as several book
chapters to her credit.
|
any_adam_object | 1 |
building | Verbundindex |
bvnumber | BV039869981 |
callnumber-first | T - Technology |
callnumber-label | TP155 |
callnumber-raw | TP155.2.E58 |
callnumber-search | TP155.2.E58 |
callnumber-sort | TP 3155.2 E58 |
callnumber-subject | TP - Chemical Technology |
classification_rvk | VN 9200 |
ctrlnum | (OCoLC)714716004 (DE-599)BVBBV039869981 |
dewey-full | 577/.14 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 577 - Ecology |
dewey-raw | 577/.14 |
dewey-search | 577/.14 |
dewey-sort | 3577 214 |
dewey-tens | 570 - Biology |
discipline | Chemie / Pharmazie Biologie |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01838nam a2200445zc 4500</leader><controlfield tag="001">BV039869981</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20120716 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">120206s2012 xxuad|| |||| 00||| eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">2011040428</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780470943083</subfield><subfield code="c">cloth</subfield><subfield code="9">978-0-470-94308-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)714716004</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV039869981</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-29T</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TP155.2.E58</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">577/.14</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">VN 9200</subfield><subfield code="0">(DE-625)147637:253</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Green chemistry for environmental remediation</subfield><subfield code="c">ed. by Rashmi Sanghi ...</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Salem, Mass. [u.a.]</subfield><subfield code="b">Scrivener Pub. [u.a.]</subfield><subfield code="c">2012</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXI, 776 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nachhaltigkeit</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Umweltschutz</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Environmental chemistry</subfield><subfield code="x">Industrial applications</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sustainable development</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Environmental protection</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Grüne Chemie</subfield><subfield code="0">(DE-588)7563215-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Grüne Chemie</subfield><subfield code="0">(DE-588)7563215-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sanghi, Rashmi</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=024729329&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=024729329&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Klappentext</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-024729329</subfield></datafield></record></collection> |
id | DE-604.BV039869981 |
illustrated | Illustrated |
indexdate | 2024-07-10T00:13:04Z |
institution | BVB |
isbn | 9780470943083 |
language | English |
lccn | 2011040428 |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-024729329 |
oclc_num | 714716004 |
open_access_boolean | |
owner | DE-29T DE-703 DE-634 |
owner_facet | DE-29T DE-703 DE-634 |
physical | XXI, 776 S. Ill., graph. Darst. |
publishDate | 2012 |
publishDateSearch | 2012 |
publishDateSort | 2012 |
publisher | Scrivener Pub. [u.a.] |
record_format | marc |
spelling | Green chemistry for environmental remediation ed. by Rashmi Sanghi ... Salem, Mass. [u.a.] Scrivener Pub. [u.a.] 2012 XXI, 776 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Includes bibliographical references and index Nachhaltigkeit Umweltschutz Environmental chemistry Industrial applications Sustainable development Environmental protection Grüne Chemie (DE-588)7563215-9 gnd rswk-swf Grüne Chemie (DE-588)7563215-9 s DE-604 Sanghi, Rashmi Sonstige oth Digitalisierung UB Bayreuth application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=024729329&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis Digitalisierung UB Bayreuth application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=024729329&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA Klappentext |
spellingShingle | Green chemistry for environmental remediation Nachhaltigkeit Umweltschutz Environmental chemistry Industrial applications Sustainable development Environmental protection Grüne Chemie (DE-588)7563215-9 gnd |
subject_GND | (DE-588)7563215-9 |
title | Green chemistry for environmental remediation |
title_auth | Green chemistry for environmental remediation |
title_exact_search | Green chemistry for environmental remediation |
title_full | Green chemistry for environmental remediation ed. by Rashmi Sanghi ... |
title_fullStr | Green chemistry for environmental remediation ed. by Rashmi Sanghi ... |
title_full_unstemmed | Green chemistry for environmental remediation ed. by Rashmi Sanghi ... |
title_short | Green chemistry for environmental remediation |
title_sort | green chemistry for environmental remediation |
topic | Nachhaltigkeit Umweltschutz Environmental chemistry Industrial applications Sustainable development Environmental protection Grüne Chemie (DE-588)7563215-9 gnd |
topic_facet | Nachhaltigkeit Umweltschutz Environmental chemistry Industrial applications Sustainable development Environmental protection Grüne Chemie |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=024729329&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=024729329&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT sanghirashmi greenchemistryforenvironmentalremediation |