Mathematics of optimization: smooth and nonsmooth case
Gespeichert in:
Format: | Elektronisch E-Book |
---|---|
Sprache: | English |
Veröffentlicht: |
Amsterdam
Elsevier
2004
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Includes bibliographical references and index The book is intended for people (graduates, researchers, but also undergraduates with a good mathematical background) involved in the study of (static) optimization problems (in finite-dimensional spaces). It contains a lot of material, from basic tools of convex analysis to optimality conditions for smooth optimization problems, for non smooth optimization problems and for vector optimization problems. The development of the subjects are self-contained and the bibliographical references are usually treated in different books (only a few books on optimization theory deal also with vector problems), so the book can be a starting point for further readings in a more specialized literature. Assuming only a good (even if not advanced) knowledge of mathematical analysis and linear algebra, this book presents various aspects of the mathematical theory in optimization problems. The treatment is performed in finite-dimensional spaces and with no regard to algorithmic questions. After two chapters concerning, respectively, introductory subjects and basic tools and concepts of convex analysis, the book treats extensively mathematical programming problems in the smmoth case, in the nonsmooth case and finally vector optimization problems. Self-contained Clear style and results are either proved or stated precisely with adequate references The authors have several years experience in this field Several subjects (some of them non usual in books of this kind) in one single book, including nonsmooth optimization and vector optimization problems Useful long references list at the end of each chapter Contents -- Preface. -- CHAPTER I. INTRODUCTION. -- 1.1 Optimization Problems. -- 1.2 Basic Mathematical Preliminaries and Notations. -- References to Chapter I. -- CHAPTER II. CONVEX SETS, CONVEX AND GENERALIZED CONVEX FUNCTIONS. -- 2.1 Convex Sets and Their Main Properties. -- 2.2 Separation Theorems. -- 2.3 Some Particular Convex Sets. Convex Cone. -- 2.4 Theorems of the Alternative for Linear Systems. -- 2.5 Convex Functions. -- 2.6 Directional Derivatives and Subgradients of Convex Functions. -- 2.7 Conjugate Functions. -- 2.8 Extrema of Convex Functions. -- 2.9 Systems of Convex Functions and Nonlinear Theorems of the Alternative. -- 2.10 Generalized Convex Functions. -- 2.11 Relationships Between the Various Classes of Generalized Convex Functions. Properties in Optimization Problems. -- 2.12 Generalized Monotonicity and Generalized Convexity. -- 2.13 Comparison Between Convex and Generalized Convex Functions. -- 2.14 Generalized Convexity at a Point. -- - 2.15 Convexity, Pseudoconvexity and Quasiconvexity of Composite Functions. -- 2.16 Convexity, Pseudoconvexity and Quasiconvexity of Quadratic Functions. -- 2.17 Other Types of Generalized Convex Functions References to Chapter II. -- CHAPTER III. SMOOTH OPTIMIZATION PROBLEMS -- SADDLE POINT CONDITIONS. -- 3.1 Introduction. -- 3.2 Unconstrained Extremum Problems and Extremum -- Problems with a Set Constraint. -- 3.3 Equality Constrained Extremum Problems. -- 3.4 Local Cone Approximations of Sets. -- 3.5 Necessary Optimality Conditions for Problem (P) where the Optimal Point is Interior to X. -- 3.6 Necessary Optimality Conditions for Problems (P e); and The Case of a Set Constraint. -- 3.7 Again on Constraint Qualifications. -- 3.8 Necessary Optimality Conditions for (P 1). -- 3.9 Sufficient First-Order Optimality Conditions for (P) and (P 1). -- 3.10 Second-Order Optimality Conditions. -- 3.11 Linearization Properties of a Nonlinear Programming Problem. -- 3.12 Some Specific Cases. -- - 3.13 Extensions to Topological Spaces. -- 3.14 Optimality Criteria of the Saddle Point Type References to Chapter III -- CHAPTER IV. NONSMOOTH OPTIMIZATION PROBLEMS. -- 4.1 Preliminary Remarks. -- 4.2 Differentiability. -- 4.3 Directional Derivatives and Subdifferentials for Convex Functions. -- 4.4 Generalized Directional Derivatives. -- 4.5 Generalized Gradient Mappings. -- 4.6 Abstract Cone Approximations of Sets and Relating Differentiability Notions. -- 4.7 Special K-Directional Derivative. -- 4.8 Generalized Optimality Conditions. -- References to Chapter IV -- CHAPTER V. DUALITY. -- 5.1 Preliminary Remarks. -- 5.2 Duality in Linear Optimization. -- 5.3 Duality in Convex Optimization (Wolfe Duality). -- 5.4 Lagrange Duality. -- 5.5 Perturbed Optimization Problems. -- References to Chapter V -- CHAPTER VI. VECTOR OPTIMIZATION. -- 6.1 Vector Optimization Problems. -- 6.2 Conical Preference Orders. -- 6.3 Optimality (or Efficiency) Notions. -- 6.4 Proper Efficiency. -- - 6.5 Theorems of Existence. -- 6.6 Optimality Conditions. -- 6.7 Scalarization. -- 6.8 The Nondifferentiable Case. -- References to Chapter VI. -- SUBJECT INDEX. |
Beschreibung: | 1 Online-Ressource (1 online resource (xv, 598 p.)) |
ISBN: | 9780444505507 0444505504 9781435687080 1435687086 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV039830095 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 120124s2004 sz |||| o||u| ||||||eng d | ||
020 | |a 9780444505507 |c electronic bk. |9 978-0-444-50550-7 | ||
020 | |a 0444505504 |c electronic bk. |9 0-444-50550-4 | ||
020 | |a 9781435687080 |c electronic bk. |9 978-1-4356-8708-0 | ||
020 | |a 1435687086 |c electronic bk. |9 1-4356-8708-6 | ||
035 | |a (ZDB-33-EBS)ocn162130127 | ||
035 | |a (OCoLC)162130127 | ||
035 | |a (DE-599)BVBBV039830095 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
044 | |a sz |c XA-CH | ||
049 | |a DE-526 |a DE-1046 |a DE-706 | ||
082 | 0 | |a 519.6 |2 22 | |
084 | |a QH 420 |0 (DE-625)141574: |2 rvk | ||
084 | |a SK 870 |0 (DE-625)143265: |2 rvk | ||
245 | 1 | 0 | |a Mathematics of optimization |b smooth and nonsmooth case |c G. Giorgi, A. Guerraggio, J. Thierfelder |
264 | 1 | |a Amsterdam |b Elsevier |c 2004 | |
300 | |a 1 Online-Ressource (1 online resource (xv, 598 p.)) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Includes bibliographical references and index | ||
500 | |a The book is intended for people (graduates, researchers, but also undergraduates with a good mathematical background) involved in the study of (static) optimization problems (in finite-dimensional spaces). It contains a lot of material, from basic tools of convex analysis to optimality conditions for smooth optimization problems, for non smooth optimization problems and for vector optimization problems. The development of the subjects are self-contained and the bibliographical references are usually treated in different books (only a few books on optimization theory deal also with vector problems), so the book can be a starting point for further readings in a more specialized literature. Assuming only a good (even if not advanced) knowledge of mathematical analysis and linear algebra, this book presents various aspects of the mathematical theory in optimization problems. The treatment is performed in finite-dimensional spaces and with no regard to algorithmic questions. After two chapters concerning, respectively, introductory subjects and basic tools and concepts of convex analysis, the book treats extensively mathematical programming problems in the smmoth case, in the nonsmooth case and finally vector optimization problems. Self-contained Clear style and results are either proved or stated precisely with adequate references The authors have several years experience in this field Several subjects (some of them non usual in books of this kind) in one single book, including nonsmooth optimization and vector optimization problems Useful long references list at the end of each chapter | ||
500 | |a Contents -- Preface. -- CHAPTER I. INTRODUCTION. -- 1.1 Optimization Problems. -- 1.2 Basic Mathematical Preliminaries and Notations. -- References to Chapter I. -- CHAPTER II. CONVEX SETS, CONVEX AND GENERALIZED CONVEX FUNCTIONS. -- 2.1 Convex Sets and Their Main Properties. -- 2.2 Separation Theorems. -- 2.3 Some Particular Convex Sets. Convex Cone. -- 2.4 Theorems of the Alternative for Linear Systems. -- 2.5 Convex Functions. -- 2.6 Directional Derivatives and Subgradients of Convex Functions. -- 2.7 Conjugate Functions. -- 2.8 Extrema of Convex Functions. -- 2.9 Systems of Convex Functions and Nonlinear Theorems of the Alternative. -- 2.10 Generalized Convex Functions. -- 2.11 Relationships Between the Various Classes of Generalized Convex Functions. Properties in Optimization Problems. -- 2.12 Generalized Monotonicity and Generalized Convexity. -- 2.13 Comparison Between Convex and Generalized Convex Functions. -- 2.14 Generalized Convexity at a Point. -- | ||
500 | |a - 2.15 Convexity, Pseudoconvexity and Quasiconvexity of Composite Functions. -- 2.16 Convexity, Pseudoconvexity and Quasiconvexity of Quadratic Functions. -- 2.17 Other Types of Generalized Convex Functions References to Chapter II. -- CHAPTER III. SMOOTH OPTIMIZATION PROBLEMS -- SADDLE POINT CONDITIONS. -- 3.1 Introduction. -- 3.2 Unconstrained Extremum Problems and Extremum -- Problems with a Set Constraint. -- 3.3 Equality Constrained Extremum Problems. -- 3.4 Local Cone Approximations of Sets. -- 3.5 Necessary Optimality Conditions for Problem (P) where the Optimal Point is Interior to X. -- 3.6 Necessary Optimality Conditions for Problems (P e); and The Case of a Set Constraint. -- 3.7 Again on Constraint Qualifications. -- 3.8 Necessary Optimality Conditions for (P 1). -- 3.9 Sufficient First-Order Optimality Conditions for (P) and (P 1). -- 3.10 Second-Order Optimality Conditions. -- 3.11 Linearization Properties of a Nonlinear Programming Problem. -- 3.12 Some Specific Cases. -- | ||
500 | |a - 3.13 Extensions to Topological Spaces. -- 3.14 Optimality Criteria of the Saddle Point Type References to Chapter III -- CHAPTER IV. NONSMOOTH OPTIMIZATION PROBLEMS. -- 4.1 Preliminary Remarks. -- 4.2 Differentiability. -- 4.3 Directional Derivatives and Subdifferentials for Convex Functions. -- 4.4 Generalized Directional Derivatives. -- 4.5 Generalized Gradient Mappings. -- 4.6 Abstract Cone Approximations of Sets and Relating Differentiability Notions. -- 4.7 Special K-Directional Derivative. -- 4.8 Generalized Optimality Conditions. -- References to Chapter IV -- CHAPTER V. DUALITY. -- 5.1 Preliminary Remarks. -- 5.2 Duality in Linear Optimization. -- 5.3 Duality in Convex Optimization (Wolfe Duality). -- 5.4 Lagrange Duality. -- 5.5 Perturbed Optimization Problems. -- References to Chapter V -- CHAPTER VI. VECTOR OPTIMIZATION. -- 6.1 Vector Optimization Problems. -- 6.2 Conical Preference Orders. -- 6.3 Optimality (or Efficiency) Notions. -- 6.4 Proper Efficiency. -- | ||
500 | |a - 6.5 Theorems of Existence. -- 6.6 Optimality Conditions. -- 6.7 Scalarization. -- 6.8 The Nondifferentiable Case. -- References to Chapter VI. -- SUBJECT INDEX. | ||
650 | 7 | |a Programacao matematica |2 larpcal | |
650 | 7 | |a Otimizacao matematica |2 larpcal | |
650 | 4 | |a Mathematical optimization | |
650 | 4 | |a Nonlinear programming | |
650 | 4 | |a Programacao matematica / larpcal | |
650 | 4 | |a Otimizacao matematica / larpcal | |
650 | 0 | 7 | |a Nichtkonvexe Optimierung |0 (DE-588)4309215-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Nichtlineare Optimierung |0 (DE-588)4128192-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Nichtlineare Optimierung |0 (DE-588)4128192-5 |D s |
689 | 0 | 1 | |a Nichtkonvexe Optimierung |0 (DE-588)4309215-9 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Giorgi, G., (Giorgio) |e Sonstige |4 oth | |
700 | 1 | |a Guerraggio, Angelo |e Sonstige |4 oth | |
700 | 1 | |a Thierfelder, J. |e Sonstige |4 oth | |
856 | 4 | 0 | |u http://www.sciencedirect.com/science/book/9780444505507 |x Verlag |3 Volltext |
912 | |a ZDB-33-ESD |a ZDB-33-EBS | ||
940 | 1 | |q FAW_PDA_ESD | |
940 | 1 | |q FLA_PDA_ESD | |
999 | |a oai:aleph.bib-bvb.de:BVB01-024690099 |
Datensatz im Suchindex
_version_ | 1804148764631367680 |
---|---|
any_adam_object | |
building | Verbundindex |
bvnumber | BV039830095 |
classification_rvk | QH 420 SK 870 |
collection | ZDB-33-ESD ZDB-33-EBS |
ctrlnum | (ZDB-33-EBS)ocn162130127 (OCoLC)162130127 (DE-599)BVBBV039830095 |
dewey-full | 519.6 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.6 |
dewey-search | 519.6 |
dewey-sort | 3519.6 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik Wirtschaftswissenschaften |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>06940nmm a2200625zc 4500</leader><controlfield tag="001">BV039830095</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">120124s2004 sz |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780444505507</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-0-444-50550-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0444505504</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">0-444-50550-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781435687080</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-1-4356-8708-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1435687086</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">1-4356-8708-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-33-EBS)ocn162130127</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)162130127</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV039830095</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">sz</subfield><subfield code="c">XA-CH</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-526</subfield><subfield code="a">DE-1046</subfield><subfield code="a">DE-706</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.6</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QH 420</subfield><subfield code="0">(DE-625)141574:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 870</subfield><subfield code="0">(DE-625)143265:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Mathematics of optimization</subfield><subfield code="b">smooth and nonsmooth case</subfield><subfield code="c">G. Giorgi, A. Guerraggio, J. Thierfelder</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Amsterdam</subfield><subfield code="b">Elsevier</subfield><subfield code="c">2004</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (1 online resource (xv, 598 p.))</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">The book is intended for people (graduates, researchers, but also undergraduates with a good mathematical background) involved in the study of (static) optimization problems (in finite-dimensional spaces). It contains a lot of material, from basic tools of convex analysis to optimality conditions for smooth optimization problems, for non smooth optimization problems and for vector optimization problems. The development of the subjects are self-contained and the bibliographical references are usually treated in different books (only a few books on optimization theory deal also with vector problems), so the book can be a starting point for further readings in a more specialized literature. Assuming only a good (even if not advanced) knowledge of mathematical analysis and linear algebra, this book presents various aspects of the mathematical theory in optimization problems. The treatment is performed in finite-dimensional spaces and with no regard to algorithmic questions. After two chapters concerning, respectively, introductory subjects and basic tools and concepts of convex analysis, the book treats extensively mathematical programming problems in the smmoth case, in the nonsmooth case and finally vector optimization problems. Self-contained Clear style and results are either proved or stated precisely with adequate references The authors have several years experience in this field Several subjects (some of them non usual in books of this kind) in one single book, including nonsmooth optimization and vector optimization problems Useful long references list at the end of each chapter</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Contents -- Preface. -- CHAPTER I. INTRODUCTION. -- 1.1 Optimization Problems. -- 1.2 Basic Mathematical Preliminaries and Notations. -- References to Chapter I. -- CHAPTER II. CONVEX SETS, CONVEX AND GENERALIZED CONVEX FUNCTIONS. -- 2.1 Convex Sets and Their Main Properties. -- 2.2 Separation Theorems. -- 2.3 Some Particular Convex Sets. Convex Cone. -- 2.4 Theorems of the Alternative for Linear Systems. -- 2.5 Convex Functions. -- 2.6 Directional Derivatives and Subgradients of Convex Functions. -- 2.7 Conjugate Functions. -- 2.8 Extrema of Convex Functions. -- 2.9 Systems of Convex Functions and Nonlinear Theorems of the Alternative. -- 2.10 Generalized Convex Functions. -- 2.11 Relationships Between the Various Classes of Generalized Convex Functions. Properties in Optimization Problems. -- 2.12 Generalized Monotonicity and Generalized Convexity. -- 2.13 Comparison Between Convex and Generalized Convex Functions. -- 2.14 Generalized Convexity at a Point. -- </subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a"> - 2.15 Convexity, Pseudoconvexity and Quasiconvexity of Composite Functions. -- 2.16 Convexity, Pseudoconvexity and Quasiconvexity of Quadratic Functions. -- 2.17 Other Types of Generalized Convex Functions References to Chapter II. -- CHAPTER III. SMOOTH OPTIMIZATION PROBLEMS -- SADDLE POINT CONDITIONS. -- 3.1 Introduction. -- 3.2 Unconstrained Extremum Problems and Extremum -- Problems with a Set Constraint. -- 3.3 Equality Constrained Extremum Problems. -- 3.4 Local Cone Approximations of Sets. -- 3.5 Necessary Optimality Conditions for Problem (P) where the Optimal Point is Interior to X. -- 3.6 Necessary Optimality Conditions for Problems (P e); and The Case of a Set Constraint. -- 3.7 Again on Constraint Qualifications. -- 3.8 Necessary Optimality Conditions for (P 1). -- 3.9 Sufficient First-Order Optimality Conditions for (P) and (P 1). -- 3.10 Second-Order Optimality Conditions. -- 3.11 Linearization Properties of a Nonlinear Programming Problem. -- 3.12 Some Specific Cases. -- </subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a"> - 3.13 Extensions to Topological Spaces. -- 3.14 Optimality Criteria of the Saddle Point Type References to Chapter III -- CHAPTER IV. NONSMOOTH OPTIMIZATION PROBLEMS. -- 4.1 Preliminary Remarks. -- 4.2 Differentiability. -- 4.3 Directional Derivatives and Subdifferentials for Convex Functions. -- 4.4 Generalized Directional Derivatives. -- 4.5 Generalized Gradient Mappings. -- 4.6 Abstract Cone Approximations of Sets and Relating Differentiability Notions. -- 4.7 Special K-Directional Derivative. -- 4.8 Generalized Optimality Conditions. -- References to Chapter IV -- CHAPTER V. DUALITY. -- 5.1 Preliminary Remarks. -- 5.2 Duality in Linear Optimization. -- 5.3 Duality in Convex Optimization (Wolfe Duality). -- 5.4 Lagrange Duality. -- 5.5 Perturbed Optimization Problems. -- References to Chapter V -- CHAPTER VI. VECTOR OPTIMIZATION. -- 6.1 Vector Optimization Problems. -- 6.2 Conical Preference Orders. -- 6.3 Optimality (or Efficiency) Notions. -- 6.4 Proper Efficiency. -- </subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a"> - 6.5 Theorems of Existence. -- 6.6 Optimality Conditions. -- 6.7 Scalarization. -- 6.8 The Nondifferentiable Case. -- References to Chapter VI. -- SUBJECT INDEX.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Programacao matematica</subfield><subfield code="2">larpcal</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Otimizacao matematica</subfield><subfield code="2">larpcal</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nonlinear programming</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Programacao matematica / larpcal</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Otimizacao matematica / larpcal</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nichtkonvexe Optimierung</subfield><subfield code="0">(DE-588)4309215-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nichtlineare Optimierung</subfield><subfield code="0">(DE-588)4128192-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Nichtlineare Optimierung</subfield><subfield code="0">(DE-588)4128192-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Nichtkonvexe Optimierung</subfield><subfield code="0">(DE-588)4309215-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Giorgi, G., (Giorgio)</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Guerraggio, Angelo</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Thierfelder, J.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/book/9780444505507</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-33-ESD</subfield><subfield code="a">ZDB-33-EBS</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FAW_PDA_ESD</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FLA_PDA_ESD</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-024690099</subfield></datafield></record></collection> |
id | DE-604.BV039830095 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T00:12:19Z |
institution | BVB |
isbn | 9780444505507 0444505504 9781435687080 1435687086 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-024690099 |
oclc_num | 162130127 |
open_access_boolean | |
owner | DE-526 DE-1046 DE-706 |
owner_facet | DE-526 DE-1046 DE-706 |
physical | 1 Online-Ressource (1 online resource (xv, 598 p.)) |
psigel | ZDB-33-ESD ZDB-33-EBS FAW_PDA_ESD FLA_PDA_ESD |
publishDate | 2004 |
publishDateSearch | 2004 |
publishDateSort | 2004 |
publisher | Elsevier |
record_format | marc |
spelling | Mathematics of optimization smooth and nonsmooth case G. Giorgi, A. Guerraggio, J. Thierfelder Amsterdam Elsevier 2004 1 Online-Ressource (1 online resource (xv, 598 p.)) txt rdacontent c rdamedia cr rdacarrier Includes bibliographical references and index The book is intended for people (graduates, researchers, but also undergraduates with a good mathematical background) involved in the study of (static) optimization problems (in finite-dimensional spaces). It contains a lot of material, from basic tools of convex analysis to optimality conditions for smooth optimization problems, for non smooth optimization problems and for vector optimization problems. The development of the subjects are self-contained and the bibliographical references are usually treated in different books (only a few books on optimization theory deal also with vector problems), so the book can be a starting point for further readings in a more specialized literature. Assuming only a good (even if not advanced) knowledge of mathematical analysis and linear algebra, this book presents various aspects of the mathematical theory in optimization problems. The treatment is performed in finite-dimensional spaces and with no regard to algorithmic questions. After two chapters concerning, respectively, introductory subjects and basic tools and concepts of convex analysis, the book treats extensively mathematical programming problems in the smmoth case, in the nonsmooth case and finally vector optimization problems. Self-contained Clear style and results are either proved or stated precisely with adequate references The authors have several years experience in this field Several subjects (some of them non usual in books of this kind) in one single book, including nonsmooth optimization and vector optimization problems Useful long references list at the end of each chapter Contents -- Preface. -- CHAPTER I. INTRODUCTION. -- 1.1 Optimization Problems. -- 1.2 Basic Mathematical Preliminaries and Notations. -- References to Chapter I. -- CHAPTER II. CONVEX SETS, CONVEX AND GENERALIZED CONVEX FUNCTIONS. -- 2.1 Convex Sets and Their Main Properties. -- 2.2 Separation Theorems. -- 2.3 Some Particular Convex Sets. Convex Cone. -- 2.4 Theorems of the Alternative for Linear Systems. -- 2.5 Convex Functions. -- 2.6 Directional Derivatives and Subgradients of Convex Functions. -- 2.7 Conjugate Functions. -- 2.8 Extrema of Convex Functions. -- 2.9 Systems of Convex Functions and Nonlinear Theorems of the Alternative. -- 2.10 Generalized Convex Functions. -- 2.11 Relationships Between the Various Classes of Generalized Convex Functions. Properties in Optimization Problems. -- 2.12 Generalized Monotonicity and Generalized Convexity. -- 2.13 Comparison Between Convex and Generalized Convex Functions. -- 2.14 Generalized Convexity at a Point. -- - 2.15 Convexity, Pseudoconvexity and Quasiconvexity of Composite Functions. -- 2.16 Convexity, Pseudoconvexity and Quasiconvexity of Quadratic Functions. -- 2.17 Other Types of Generalized Convex Functions References to Chapter II. -- CHAPTER III. SMOOTH OPTIMIZATION PROBLEMS -- SADDLE POINT CONDITIONS. -- 3.1 Introduction. -- 3.2 Unconstrained Extremum Problems and Extremum -- Problems with a Set Constraint. -- 3.3 Equality Constrained Extremum Problems. -- 3.4 Local Cone Approximations of Sets. -- 3.5 Necessary Optimality Conditions for Problem (P) where the Optimal Point is Interior to X. -- 3.6 Necessary Optimality Conditions for Problems (P e); and The Case of a Set Constraint. -- 3.7 Again on Constraint Qualifications. -- 3.8 Necessary Optimality Conditions for (P 1). -- 3.9 Sufficient First-Order Optimality Conditions for (P) and (P 1). -- 3.10 Second-Order Optimality Conditions. -- 3.11 Linearization Properties of a Nonlinear Programming Problem. -- 3.12 Some Specific Cases. -- - 3.13 Extensions to Topological Spaces. -- 3.14 Optimality Criteria of the Saddle Point Type References to Chapter III -- CHAPTER IV. NONSMOOTH OPTIMIZATION PROBLEMS. -- 4.1 Preliminary Remarks. -- 4.2 Differentiability. -- 4.3 Directional Derivatives and Subdifferentials for Convex Functions. -- 4.4 Generalized Directional Derivatives. -- 4.5 Generalized Gradient Mappings. -- 4.6 Abstract Cone Approximations of Sets and Relating Differentiability Notions. -- 4.7 Special K-Directional Derivative. -- 4.8 Generalized Optimality Conditions. -- References to Chapter IV -- CHAPTER V. DUALITY. -- 5.1 Preliminary Remarks. -- 5.2 Duality in Linear Optimization. -- 5.3 Duality in Convex Optimization (Wolfe Duality). -- 5.4 Lagrange Duality. -- 5.5 Perturbed Optimization Problems. -- References to Chapter V -- CHAPTER VI. VECTOR OPTIMIZATION. -- 6.1 Vector Optimization Problems. -- 6.2 Conical Preference Orders. -- 6.3 Optimality (or Efficiency) Notions. -- 6.4 Proper Efficiency. -- - 6.5 Theorems of Existence. -- 6.6 Optimality Conditions. -- 6.7 Scalarization. -- 6.8 The Nondifferentiable Case. -- References to Chapter VI. -- SUBJECT INDEX. Programacao matematica larpcal Otimizacao matematica larpcal Mathematical optimization Nonlinear programming Programacao matematica / larpcal Otimizacao matematica / larpcal Nichtkonvexe Optimierung (DE-588)4309215-9 gnd rswk-swf Nichtlineare Optimierung (DE-588)4128192-5 gnd rswk-swf Nichtlineare Optimierung (DE-588)4128192-5 s Nichtkonvexe Optimierung (DE-588)4309215-9 s DE-604 Giorgi, G., (Giorgio) Sonstige oth Guerraggio, Angelo Sonstige oth Thierfelder, J. Sonstige oth http://www.sciencedirect.com/science/book/9780444505507 Verlag Volltext |
spellingShingle | Mathematics of optimization smooth and nonsmooth case Programacao matematica larpcal Otimizacao matematica larpcal Mathematical optimization Nonlinear programming Programacao matematica / larpcal Otimizacao matematica / larpcal Nichtkonvexe Optimierung (DE-588)4309215-9 gnd Nichtlineare Optimierung (DE-588)4128192-5 gnd |
subject_GND | (DE-588)4309215-9 (DE-588)4128192-5 |
title | Mathematics of optimization smooth and nonsmooth case |
title_auth | Mathematics of optimization smooth and nonsmooth case |
title_exact_search | Mathematics of optimization smooth and nonsmooth case |
title_full | Mathematics of optimization smooth and nonsmooth case G. Giorgi, A. Guerraggio, J. Thierfelder |
title_fullStr | Mathematics of optimization smooth and nonsmooth case G. Giorgi, A. Guerraggio, J. Thierfelder |
title_full_unstemmed | Mathematics of optimization smooth and nonsmooth case G. Giorgi, A. Guerraggio, J. Thierfelder |
title_short | Mathematics of optimization |
title_sort | mathematics of optimization smooth and nonsmooth case |
title_sub | smooth and nonsmooth case |
topic | Programacao matematica larpcal Otimizacao matematica larpcal Mathematical optimization Nonlinear programming Programacao matematica / larpcal Otimizacao matematica / larpcal Nichtkonvexe Optimierung (DE-588)4309215-9 gnd Nichtlineare Optimierung (DE-588)4128192-5 gnd |
topic_facet | Programacao matematica Otimizacao matematica Mathematical optimization Nonlinear programming Programacao matematica / larpcal Otimizacao matematica / larpcal Nichtkonvexe Optimierung Nichtlineare Optimierung |
url | http://www.sciencedirect.com/science/book/9780444505507 |
work_keys_str_mv | AT giorgiggiorgio mathematicsofoptimizationsmoothandnonsmoothcase AT guerraggioangelo mathematicsofoptimizationsmoothandnonsmoothcase AT thierfelderj mathematicsofoptimizationsmoothandnonsmoothcase |