Kinetic Boltzmann, Vlasov and related equations:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Amsterdam [u.a.]
Elsevier
2011
|
Ausgabe: | 1. ed. |
Schlagworte: | |
Online-Zugang: | BTU01 Volltext |
Beschreibung: | Principal Concepts of Kinetic Equations -- 2. Lagrangian Coordinates -- 3. Vlasov-Maxwell and Vlasov-Einstein Equations -- 4. Energetic Substitution -- 5. Introduction to the Mathematical Theory of Kinetic Equations -- 6. On the Family of the Steady-State Solutions of Vlasov-Maxwell System -- 7. Boundary Value Problems for the Vlasov-Maxwell System -- 8. Bifurcation of Stationary Solutions of the Vlasov-Maxwell System 9. Boltzmann Equation -- 10. Discrete Models of Boltzmann Equation -- 11. Method of Spherical Harmonics and Relaxation of Maxwellian Gas -- 12. Discrete Boltzmann Equation Models for Mixtures -- 13. Quantum Hamiltonians and Kinetic Equations -- 14. Modeling of the Limit Problem for the Magnetically Noninsulated Diode -- 15. Generalized Liouville Equation and Approximate Orthogonal Decomposition Methods; Glossary of Terms and Symbols Boltzmann and Vlasov equations played a great role in the past and still play an important role in modern natural sciences, technique and even philosophy of science. Classical Boltzmann equation derived in 1872 became a cornerstone for the molecular-kinetic theory, the second law of thermodynamics (increasing entropy) and derivation of the basic hydrodynamic equations. After modifications, the fields and numbers of its applications have increased to include diluted gas, radiation, neutral particles transportation, atmosphere optics and nuclear reactor modelling. Vlasov equation was obtained in Includes bibliographical references |
Beschreibung: | 1 Online-Ressource (1 online resource (xv, 304 S.)) |
ISBN: | 9780123877796 9780123877802 0123877806 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV039830061 | ||
003 | DE-604 | ||
005 | 20190307 | ||
007 | cr|uuu---uuuuu | ||
008 | 120124s2011 sz |||| o||u| ||||||eng d | ||
020 | |a 9780123877796 |9 978-0-12-387779-6 | ||
020 | |a 9780123877802 |c electronic bk. |9 978-0-12-387780-2 | ||
020 | |a 0123877806 |c electronic bk. |9 0-12-387780-6 | ||
035 | |a (OCoLC)731646701 | ||
035 | |a (DE-599)BVBBV039830061 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
044 | |a sz |c XA-CH | ||
049 | |a DE-634 | ||
082 | 0 | |a 533/.7 |2 23 | |
100 | 1 | |a Vedenjapin, Viktor |e Verfasser |4 aut | |
245 | 1 | 0 | |a Kinetic Boltzmann, Vlasov and related equations |c Victor Vedenyapin ; Alexander Sinitsyn ; Eugene Dulov |
250 | |a 1. ed. | ||
264 | 1 | |a Amsterdam [u.a.] |b Elsevier |c 2011 | |
300 | |a 1 Online-Ressource (1 online resource (xv, 304 S.)) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Principal Concepts of Kinetic Equations -- 2. Lagrangian Coordinates -- 3. Vlasov-Maxwell and Vlasov-Einstein Equations -- 4. Energetic Substitution -- 5. Introduction to the Mathematical Theory of Kinetic Equations -- 6. On the Family of the Steady-State Solutions of Vlasov-Maxwell System -- 7. Boundary Value Problems for the Vlasov-Maxwell System -- 8. Bifurcation of Stationary Solutions of the Vlasov-Maxwell System | ||
500 | |a 9. Boltzmann Equation -- 10. Discrete Models of Boltzmann Equation -- 11. Method of Spherical Harmonics and Relaxation of Maxwellian Gas -- 12. Discrete Boltzmann Equation Models for Mixtures -- 13. Quantum Hamiltonians and Kinetic Equations -- 14. Modeling of the Limit Problem for the Magnetically Noninsulated Diode -- 15. Generalized Liouville Equation and Approximate Orthogonal Decomposition Methods; Glossary of Terms and Symbols | ||
500 | |a Boltzmann and Vlasov equations played a great role in the past and still play an important role in modern natural sciences, technique and even philosophy of science. Classical Boltzmann equation derived in 1872 became a cornerstone for the molecular-kinetic theory, the second law of thermodynamics (increasing entropy) and derivation of the basic hydrodynamic equations. After modifications, the fields and numbers of its applications have increased to include diluted gas, radiation, neutral particles transportation, atmosphere optics and nuclear reactor modelling. Vlasov equation was obtained in | ||
500 | |a Includes bibliographical references | ||
650 | 4 | |a Naturwissenschaft | |
650 | 4 | |a Kinetic theory of gases | |
650 | 4 | |a Evolution equations | |
650 | 4 | |a Numerical analysis | |
650 | 4 | |a Physics | |
650 | 4 | |a Science | |
700 | 1 | |a Sinitsyn, Alexander |e Sonstige |0 (DE-588)135061490 |4 oth | |
700 | 1 | |a Dulov, Eugene |e Sonstige |4 oth | |
856 | 4 | 0 | |u http://www.sciencedirect.com/science/book/9780123877796 |x Verlag |3 Volltext |
912 | |a ZDB-33-MTC | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-024690065 | ||
966 | e | |u http://www.sciencedirect.com/science/book/9780123877796 |l BTU01 |p ZDB-33-MTC |q BTU_PDA_MTC_Kauf |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804148764631367680 |
---|---|
any_adam_object | |
author | Vedenjapin, Viktor |
author_GND | (DE-588)135061490 |
author_facet | Vedenjapin, Viktor |
author_role | aut |
author_sort | Vedenjapin, Viktor |
author_variant | v v vv |
building | Verbundindex |
bvnumber | BV039830061 |
collection | ZDB-33-MTC |
ctrlnum | (OCoLC)731646701 (DE-599)BVBBV039830061 |
dewey-full | 533/.7 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 533 - Pneumatics (Gas mechanics) |
dewey-raw | 533/.7 |
dewey-search | 533/.7 |
dewey-sort | 3533 17 |
dewey-tens | 530 - Physics |
discipline | Physik |
edition | 1. ed. |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03118nmm a2200493zc 4500</leader><controlfield tag="001">BV039830061</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20190307 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">120124s2011 sz |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780123877796</subfield><subfield code="9">978-0-12-387779-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780123877802</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-0-12-387780-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0123877806</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">0-12-387780-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)731646701</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV039830061</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">sz</subfield><subfield code="c">XA-CH</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">533/.7</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Vedenjapin, Viktor</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Kinetic Boltzmann, Vlasov and related equations</subfield><subfield code="c">Victor Vedenyapin ; Alexander Sinitsyn ; Eugene Dulov</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Amsterdam [u.a.]</subfield><subfield code="b">Elsevier</subfield><subfield code="c">2011</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (1 online resource (xv, 304 S.))</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Principal Concepts of Kinetic Equations -- 2. Lagrangian Coordinates -- 3. Vlasov-Maxwell and Vlasov-Einstein Equations -- 4. Energetic Substitution -- 5. Introduction to the Mathematical Theory of Kinetic Equations -- 6. On the Family of the Steady-State Solutions of Vlasov-Maxwell System -- 7. Boundary Value Problems for the Vlasov-Maxwell System -- 8. Bifurcation of Stationary Solutions of the Vlasov-Maxwell System</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">9. Boltzmann Equation -- 10. Discrete Models of Boltzmann Equation -- 11. Method of Spherical Harmonics and Relaxation of Maxwellian Gas -- 12. Discrete Boltzmann Equation Models for Mixtures -- 13. Quantum Hamiltonians and Kinetic Equations -- 14. Modeling of the Limit Problem for the Magnetically Noninsulated Diode -- 15. Generalized Liouville Equation and Approximate Orthogonal Decomposition Methods; Glossary of Terms and Symbols</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Boltzmann and Vlasov equations played a great role in the past and still play an important role in modern natural sciences, technique and even philosophy of science. Classical Boltzmann equation derived in 1872 became a cornerstone for the molecular-kinetic theory, the second law of thermodynamics (increasing entropy) and derivation of the basic hydrodynamic equations. After modifications, the fields and numbers of its applications have increased to include diluted gas, radiation, neutral particles transportation, atmosphere optics and nuclear reactor modelling. Vlasov equation was obtained in</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Naturwissenschaft</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Kinetic theory of gases</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Evolution equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Numerical analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Science</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sinitsyn, Alexander</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)135061490</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dulov, Eugene</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/book/9780123877796</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-33-MTC</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-024690065</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://www.sciencedirect.com/science/book/9780123877796</subfield><subfield code="l">BTU01</subfield><subfield code="p">ZDB-33-MTC</subfield><subfield code="q">BTU_PDA_MTC_Kauf</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV039830061 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T00:12:19Z |
institution | BVB |
isbn | 9780123877796 9780123877802 0123877806 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-024690065 |
oclc_num | 731646701 |
open_access_boolean | |
owner | DE-634 |
owner_facet | DE-634 |
physical | 1 Online-Ressource (1 online resource (xv, 304 S.)) |
psigel | ZDB-33-MTC ZDB-33-MTC BTU_PDA_MTC_Kauf |
publishDate | 2011 |
publishDateSearch | 2011 |
publishDateSort | 2011 |
publisher | Elsevier |
record_format | marc |
spelling | Vedenjapin, Viktor Verfasser aut Kinetic Boltzmann, Vlasov and related equations Victor Vedenyapin ; Alexander Sinitsyn ; Eugene Dulov 1. ed. Amsterdam [u.a.] Elsevier 2011 1 Online-Ressource (1 online resource (xv, 304 S.)) txt rdacontent c rdamedia cr rdacarrier Principal Concepts of Kinetic Equations -- 2. Lagrangian Coordinates -- 3. Vlasov-Maxwell and Vlasov-Einstein Equations -- 4. Energetic Substitution -- 5. Introduction to the Mathematical Theory of Kinetic Equations -- 6. On the Family of the Steady-State Solutions of Vlasov-Maxwell System -- 7. Boundary Value Problems for the Vlasov-Maxwell System -- 8. Bifurcation of Stationary Solutions of the Vlasov-Maxwell System 9. Boltzmann Equation -- 10. Discrete Models of Boltzmann Equation -- 11. Method of Spherical Harmonics and Relaxation of Maxwellian Gas -- 12. Discrete Boltzmann Equation Models for Mixtures -- 13. Quantum Hamiltonians and Kinetic Equations -- 14. Modeling of the Limit Problem for the Magnetically Noninsulated Diode -- 15. Generalized Liouville Equation and Approximate Orthogonal Decomposition Methods; Glossary of Terms and Symbols Boltzmann and Vlasov equations played a great role in the past and still play an important role in modern natural sciences, technique and even philosophy of science. Classical Boltzmann equation derived in 1872 became a cornerstone for the molecular-kinetic theory, the second law of thermodynamics (increasing entropy) and derivation of the basic hydrodynamic equations. After modifications, the fields and numbers of its applications have increased to include diluted gas, radiation, neutral particles transportation, atmosphere optics and nuclear reactor modelling. Vlasov equation was obtained in Includes bibliographical references Naturwissenschaft Kinetic theory of gases Evolution equations Numerical analysis Physics Science Sinitsyn, Alexander Sonstige (DE-588)135061490 oth Dulov, Eugene Sonstige oth http://www.sciencedirect.com/science/book/9780123877796 Verlag Volltext |
spellingShingle | Vedenjapin, Viktor Kinetic Boltzmann, Vlasov and related equations Naturwissenschaft Kinetic theory of gases Evolution equations Numerical analysis Physics Science |
title | Kinetic Boltzmann, Vlasov and related equations |
title_auth | Kinetic Boltzmann, Vlasov and related equations |
title_exact_search | Kinetic Boltzmann, Vlasov and related equations |
title_full | Kinetic Boltzmann, Vlasov and related equations Victor Vedenyapin ; Alexander Sinitsyn ; Eugene Dulov |
title_fullStr | Kinetic Boltzmann, Vlasov and related equations Victor Vedenyapin ; Alexander Sinitsyn ; Eugene Dulov |
title_full_unstemmed | Kinetic Boltzmann, Vlasov and related equations Victor Vedenyapin ; Alexander Sinitsyn ; Eugene Dulov |
title_short | Kinetic Boltzmann, Vlasov and related equations |
title_sort | kinetic boltzmann vlasov and related equations |
topic | Naturwissenschaft Kinetic theory of gases Evolution equations Numerical analysis Physics Science |
topic_facet | Naturwissenschaft Kinetic theory of gases Evolution equations Numerical analysis Physics Science |
url | http://www.sciencedirect.com/science/book/9780123877796 |
work_keys_str_mv | AT vedenjapinviktor kineticboltzmannvlasovandrelatedequations AT sinitsynalexander kineticboltzmannvlasovandrelatedequations AT duloveugene kineticboltzmannvlasovandrelatedequations |