Traveling wave analysis of partial differential equations: numerical and analytical methods with Matlab and Maple
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Oxford
Academic Press
c2012
|
Schlagworte: | |
Online-Zugang: | BTU01 Volltext |
Beschreibung: | Although the Partial Differential Equations (PDE) models that are now studied are usually beyond traditional mathematical analysis, the numerical methods that are being developed and used require testing and validation. This is often done with PDEs that have known, exact, analytical solutions. The development of analytical solutions is also an active area of research, with many advances being reported recently, particularly traveling wave solutions for nonlinear evolutionary PDEs. Thus, the current development of analytical solutions directly supports the development of numerical methods by providing a spectrum of test problems that can be used to evaluate numerical methods. This book surveys some of these new developments in analytical and numerical methods, and relates the two through a series of PDE examples. The PDEs that have been selected are largely "named'' since they carry the names of their original contributors. These names usually signify that the PDEs are widely recognized and used in many application areas. The authors' intention is to provide a set of numerical and analytical methods based on the concept of a traveling wave, with a central feature of conversion of the PDEs to ODEs. The Matlab and Maple software will be available for download from this website shortly. www.pdecomp.net Includes a spectrum of applications in science, engineering, applied mathematics Presents a combination of numerical and analytical methods Provides transportable computer codes in Matlab and Maple 1. Traveling wave, residual function methods for analytical solutions to PDEs -- 2. Linear advection equation -- 3. Linear diusion equation -- 4. Linear convection diusion reaction equation -- 5. Diusion equation with nonlinear source terms -- 6. Burgers-Huxley equation -- 7. Burgers-Fisher equation -- 8. Fisher-Kolmogorov equation -- 9. Fitzhugh-Nagumo equation -- 10. Fisher-Kolmogorov-Petrovskii-Piskunov equation -- 11. Kuramoto-Sivashinsky equation -- 12. Kawahara equation -- 13. Benjamin-Bona-Mahoney (RLW) equation -- 14. Extended Bernoulli equation -- 15. Hyperbolic Liouville equation -- 16. Sine-Gordon equation -- 17. Mth order Klein-Gordon equation -- 18. Boussinesq equation -- 19. Modied wave equation -- 20. Appendix 1 -- Analytical solution methods for traveling wave problems |
Beschreibung: | 1 Online-Ressource (1 online resource(xiii, 447 S.)) |
ISBN: | 9780123846525 0123846528 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV039830056 | ||
003 | DE-604 | ||
005 | 20190307 | ||
007 | cr|uuu---uuuuu | ||
008 | 120124s2012 sz |||| o||u| ||||||eng d | ||
020 | |a 9780123846525 |c electronic bk. |9 978-0-12-384652-5 | ||
020 | |a 0123846528 |c electronic bk. |9 0-12-384652-8 | ||
035 | |a (OCoLC)706803072 | ||
035 | |a (DE-599)BVBBV039830056 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
044 | |a sz |c XA-CH | ||
049 | |a DE-634 |a DE-1046 | ||
082 | 0 | |a 515.353 |2 22 | |
100 | 1 | |a Griffiths, Graham W. |e Verfasser |0 (DE-588)138327440 |4 aut | |
245 | 1 | 0 | |a Traveling wave analysis of partial differential equations |b numerical and analytical methods with Matlab and Maple |c Graham W. Griffiths ; William E. Schiesser |
264 | 1 | |a Oxford |b Academic Press |c c2012 | |
300 | |a 1 Online-Ressource (1 online resource(xiii, 447 S.)) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Although the Partial Differential Equations (PDE) models that are now studied are usually beyond traditional mathematical analysis, the numerical methods that are being developed and used require testing and validation. This is often done with PDEs that have known, exact, analytical solutions. The development of analytical solutions is also an active area of research, with many advances being reported recently, particularly traveling wave solutions for nonlinear evolutionary PDEs. Thus, the current development of analytical solutions directly supports the development of numerical methods by providing a spectrum of test problems that can be used to evaluate numerical methods. This book surveys some of these new developments in analytical and numerical methods, and relates the two through a series of PDE examples. The PDEs that have been selected are largely "named'' since they carry the names of their original contributors. These names usually signify that the PDEs are widely recognized and used in many application areas. The authors' intention is to provide a set of numerical and analytical methods based on the concept of a traveling wave, with a central feature of conversion of the PDEs to ODEs. The Matlab and Maple software will be available for download from this website shortly. www.pdecomp.net Includes a spectrum of applications in science, engineering, applied mathematics Presents a combination of numerical and analytical methods Provides transportable computer codes in Matlab and Maple | ||
500 | |a 1. Traveling wave, residual function methods for analytical solutions to PDEs -- 2. Linear advection equation -- 3. Linear diusion equation -- 4. Linear convection diusion reaction equation -- 5. Diusion equation with nonlinear source terms -- 6. Burgers-Huxley equation -- 7. Burgers-Fisher equation -- 8. Fisher-Kolmogorov equation -- 9. Fitzhugh-Nagumo equation -- 10. Fisher-Kolmogorov-Petrovskii-Piskunov equation -- 11. Kuramoto-Sivashinsky equation -- 12. Kawahara equation -- 13. Benjamin-Bona-Mahoney (RLW) equation -- 14. Extended Bernoulli equation -- 15. Hyperbolic Liouville equation -- 16. Sine-Gordon equation -- 17. Mth order Klein-Gordon equation -- 18. Boussinesq equation -- 19. Modied wave equation -- 20. Appendix 1 -- Analytical solution methods for traveling wave problems | ||
630 | 0 | 4 | |a MATLAB. |
630 | 0 | 4 | |a Maple (Computer file) |
650 | 4 | |a Differential equations, Partial | |
650 | 4 | |a Numerical analysis / Computer programs | |
650 | 0 | 7 | |a MATLAB |0 (DE-588)4329066-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Maple |g Programm |0 (DE-588)4209397-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Partielle Differentialgleichung |0 (DE-588)4044779-0 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Partielle Differentialgleichung |0 (DE-588)4044779-0 |D s |
689 | 0 | 1 | |a MATLAB |0 (DE-588)4329066-8 |D s |
689 | 0 | 2 | |a Maple |g Programm |0 (DE-588)4209397-1 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Schiesser, William E. |d 1934- |e Sonstige |0 (DE-588)136985866 |4 oth | |
856 | 4 | 0 | |u http://www.sciencedirect.com/science/book/9780123846525 |x Verlag |3 Volltext |
912 | |a ZDB-33-ESD |a ZDB-33-MTC |a ZDB-33-EBS | ||
940 | 1 | |q FAW_PDA_ESD | |
940 | 1 | |q FLA_PDA_ESD | |
999 | |a oai:aleph.bib-bvb.de:BVB01-024690060 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://www.sciencedirect.com/science/book/9780123846525 |l BTU01 |p ZDB-33-MTC |q BTU_PDA_MTC_Kauf |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804148764625076224 |
---|---|
any_adam_object | |
author | Griffiths, Graham W. |
author_GND | (DE-588)138327440 (DE-588)136985866 |
author_facet | Griffiths, Graham W. |
author_role | aut |
author_sort | Griffiths, Graham W. |
author_variant | g w g gw gwg |
building | Verbundindex |
bvnumber | BV039830056 |
collection | ZDB-33-ESD ZDB-33-MTC ZDB-33-EBS |
ctrlnum | (OCoLC)706803072 (DE-599)BVBBV039830056 |
dewey-full | 515.353 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.353 |
dewey-search | 515.353 |
dewey-sort | 3515.353 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04420nmm a2200529zc 4500</leader><controlfield tag="001">BV039830056</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20190307 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">120124s2012 sz |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780123846525</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-0-12-384652-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0123846528</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">0-12-384652-8</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)706803072</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV039830056</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">sz</subfield><subfield code="c">XA-CH</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-634</subfield><subfield code="a">DE-1046</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.353</subfield><subfield code="2">22</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Griffiths, Graham W.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)138327440</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Traveling wave analysis of partial differential equations</subfield><subfield code="b">numerical and analytical methods with Matlab and Maple</subfield><subfield code="c">Graham W. Griffiths ; William E. Schiesser</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Oxford</subfield><subfield code="b">Academic Press</subfield><subfield code="c">c2012</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (1 online resource(xiii, 447 S.))</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Although the Partial Differential Equations (PDE) models that are now studied are usually beyond traditional mathematical analysis, the numerical methods that are being developed and used require testing and validation. This is often done with PDEs that have known, exact, analytical solutions. The development of analytical solutions is also an active area of research, with many advances being reported recently, particularly traveling wave solutions for nonlinear evolutionary PDEs. Thus, the current development of analytical solutions directly supports the development of numerical methods by providing a spectrum of test problems that can be used to evaluate numerical methods. This book surveys some of these new developments in analytical and numerical methods, and relates the two through a series of PDE examples. The PDEs that have been selected are largely "named'' since they carry the names of their original contributors. These names usually signify that the PDEs are widely recognized and used in many application areas. The authors' intention is to provide a set of numerical and analytical methods based on the concept of a traveling wave, with a central feature of conversion of the PDEs to ODEs. The Matlab and Maple software will be available for download from this website shortly. www.pdecomp.net Includes a spectrum of applications in science, engineering, applied mathematics Presents a combination of numerical and analytical methods Provides transportable computer codes in Matlab and Maple</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">1. Traveling wave, residual function methods for analytical solutions to PDEs -- 2. Linear advection equation -- 3. Linear diusion equation -- 4. Linear convection diusion reaction equation -- 5. Diusion equation with nonlinear source terms -- 6. Burgers-Huxley equation -- 7. Burgers-Fisher equation -- 8. Fisher-Kolmogorov equation -- 9. Fitzhugh-Nagumo equation -- 10. Fisher-Kolmogorov-Petrovskii-Piskunov equation -- 11. Kuramoto-Sivashinsky equation -- 12. Kawahara equation -- 13. Benjamin-Bona-Mahoney (RLW) equation -- 14. Extended Bernoulli equation -- 15. Hyperbolic Liouville equation -- 16. Sine-Gordon equation -- 17. Mth order Klein-Gordon equation -- 18. Boussinesq equation -- 19. Modied wave equation -- 20. Appendix 1 -- Analytical solution methods for traveling wave problems</subfield></datafield><datafield tag="630" ind1="0" ind2="4"><subfield code="a">MATLAB.</subfield></datafield><datafield tag="630" ind1="0" ind2="4"><subfield code="a">Maple (Computer file)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations, Partial</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Numerical analysis / Computer programs</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">MATLAB</subfield><subfield code="0">(DE-588)4329066-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Maple</subfield><subfield code="g">Programm</subfield><subfield code="0">(DE-588)4209397-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Partielle Differentialgleichung</subfield><subfield code="0">(DE-588)4044779-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Partielle Differentialgleichung</subfield><subfield code="0">(DE-588)4044779-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">MATLAB</subfield><subfield code="0">(DE-588)4329066-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Maple</subfield><subfield code="g">Programm</subfield><subfield code="0">(DE-588)4209397-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Schiesser, William E.</subfield><subfield code="d">1934-</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)136985866</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/book/9780123846525</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-33-ESD</subfield><subfield code="a">ZDB-33-MTC</subfield><subfield code="a">ZDB-33-EBS</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FAW_PDA_ESD</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FLA_PDA_ESD</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-024690060</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://www.sciencedirect.com/science/book/9780123846525</subfield><subfield code="l">BTU01</subfield><subfield code="p">ZDB-33-MTC</subfield><subfield code="q">BTU_PDA_MTC_Kauf</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV039830056 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T00:12:19Z |
institution | BVB |
isbn | 9780123846525 0123846528 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-024690060 |
oclc_num | 706803072 |
open_access_boolean | |
owner | DE-634 DE-1046 |
owner_facet | DE-634 DE-1046 |
physical | 1 Online-Ressource (1 online resource(xiii, 447 S.)) |
psigel | ZDB-33-ESD ZDB-33-MTC ZDB-33-EBS FAW_PDA_ESD FLA_PDA_ESD ZDB-33-MTC BTU_PDA_MTC_Kauf |
publishDate | 2012 |
publishDateSearch | 2012 |
publishDateSort | 2012 |
publisher | Academic Press |
record_format | marc |
spelling | Griffiths, Graham W. Verfasser (DE-588)138327440 aut Traveling wave analysis of partial differential equations numerical and analytical methods with Matlab and Maple Graham W. Griffiths ; William E. Schiesser Oxford Academic Press c2012 1 Online-Ressource (1 online resource(xiii, 447 S.)) txt rdacontent c rdamedia cr rdacarrier Although the Partial Differential Equations (PDE) models that are now studied are usually beyond traditional mathematical analysis, the numerical methods that are being developed and used require testing and validation. This is often done with PDEs that have known, exact, analytical solutions. The development of analytical solutions is also an active area of research, with many advances being reported recently, particularly traveling wave solutions for nonlinear evolutionary PDEs. Thus, the current development of analytical solutions directly supports the development of numerical methods by providing a spectrum of test problems that can be used to evaluate numerical methods. This book surveys some of these new developments in analytical and numerical methods, and relates the two through a series of PDE examples. The PDEs that have been selected are largely "named'' since they carry the names of their original contributors. These names usually signify that the PDEs are widely recognized and used in many application areas. The authors' intention is to provide a set of numerical and analytical methods based on the concept of a traveling wave, with a central feature of conversion of the PDEs to ODEs. The Matlab and Maple software will be available for download from this website shortly. www.pdecomp.net Includes a spectrum of applications in science, engineering, applied mathematics Presents a combination of numerical and analytical methods Provides transportable computer codes in Matlab and Maple 1. Traveling wave, residual function methods for analytical solutions to PDEs -- 2. Linear advection equation -- 3. Linear diusion equation -- 4. Linear convection diusion reaction equation -- 5. Diusion equation with nonlinear source terms -- 6. Burgers-Huxley equation -- 7. Burgers-Fisher equation -- 8. Fisher-Kolmogorov equation -- 9. Fitzhugh-Nagumo equation -- 10. Fisher-Kolmogorov-Petrovskii-Piskunov equation -- 11. Kuramoto-Sivashinsky equation -- 12. Kawahara equation -- 13. Benjamin-Bona-Mahoney (RLW) equation -- 14. Extended Bernoulli equation -- 15. Hyperbolic Liouville equation -- 16. Sine-Gordon equation -- 17. Mth order Klein-Gordon equation -- 18. Boussinesq equation -- 19. Modied wave equation -- 20. Appendix 1 -- Analytical solution methods for traveling wave problems MATLAB. Maple (Computer file) Differential equations, Partial Numerical analysis / Computer programs MATLAB (DE-588)4329066-8 gnd rswk-swf Maple Programm (DE-588)4209397-1 gnd rswk-swf Partielle Differentialgleichung (DE-588)4044779-0 gnd rswk-swf Partielle Differentialgleichung (DE-588)4044779-0 s MATLAB (DE-588)4329066-8 s Maple Programm (DE-588)4209397-1 s 1\p DE-604 Schiesser, William E. 1934- Sonstige (DE-588)136985866 oth http://www.sciencedirect.com/science/book/9780123846525 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Griffiths, Graham W. Traveling wave analysis of partial differential equations numerical and analytical methods with Matlab and Maple MATLAB. Maple (Computer file) Differential equations, Partial Numerical analysis / Computer programs MATLAB (DE-588)4329066-8 gnd Maple Programm (DE-588)4209397-1 gnd Partielle Differentialgleichung (DE-588)4044779-0 gnd |
subject_GND | (DE-588)4329066-8 (DE-588)4209397-1 (DE-588)4044779-0 |
title | Traveling wave analysis of partial differential equations numerical and analytical methods with Matlab and Maple |
title_auth | Traveling wave analysis of partial differential equations numerical and analytical methods with Matlab and Maple |
title_exact_search | Traveling wave analysis of partial differential equations numerical and analytical methods with Matlab and Maple |
title_full | Traveling wave analysis of partial differential equations numerical and analytical methods with Matlab and Maple Graham W. Griffiths ; William E. Schiesser |
title_fullStr | Traveling wave analysis of partial differential equations numerical and analytical methods with Matlab and Maple Graham W. Griffiths ; William E. Schiesser |
title_full_unstemmed | Traveling wave analysis of partial differential equations numerical and analytical methods with Matlab and Maple Graham W. Griffiths ; William E. Schiesser |
title_short | Traveling wave analysis of partial differential equations |
title_sort | traveling wave analysis of partial differential equations numerical and analytical methods with matlab and maple |
title_sub | numerical and analytical methods with Matlab and Maple |
topic | MATLAB. Maple (Computer file) Differential equations, Partial Numerical analysis / Computer programs MATLAB (DE-588)4329066-8 gnd Maple Programm (DE-588)4209397-1 gnd Partielle Differentialgleichung (DE-588)4044779-0 gnd |
topic_facet | MATLAB. Maple (Computer file) Differential equations, Partial Numerical analysis / Computer programs MATLAB Maple Programm Partielle Differentialgleichung |
url | http://www.sciencedirect.com/science/book/9780123846525 |
work_keys_str_mv | AT griffithsgrahamw travelingwaveanalysisofpartialdifferentialequationsnumericalandanalyticalmethodswithmatlabandmaple AT schiesserwilliame travelingwaveanalysisofpartialdifferentialequationsnumericalandanalyticalmethodswithmatlabandmaple |