Pattern recognition: Previous ed.: San Diego, CA : Academic Press, c2006
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Amsterdam [u.a.]
Academic Press
2009
|
Ausgabe: | 4. ed. |
Schlagworte: | |
Online-Zugang: | FAW01 FHI01 FUBA1 Volltext |
Beschreibung: | This book considers classical and current theory and practice, of supervised, unsupervised and semi-supervised pattern recognition, to build a complete background for professionals and students of engineering. The authors, leading experts in the field of pattern recognition, have provided an up-to-date, self-contained volume encapsulating this wide spectrum of information. The very latest methods are incorporated in this edition: semi-supervised learning, combining clustering algorithms, and relevance feedback. Thoroughly developed to include many more worked examples to give greater understanding of the various methods and techniques Many more diagrams included--now in two color--to provide greater insight through visual presentation Matlab code of the most common methods are given at the end of each chapter An accompanying book with Matlab code of the most common methods and algorithms in the book, together with a descriptive summary and solved examples, and including real-life data sets in imaging and audio recognition. The companion book is available separately or at a special packaged price (Book ISBN: 9780123744869. Package ISBN: 9780123744913) Latest hot topics included to further the reference value of the text including non-linear dimensionality reduction techniques, relevance feedback, semi-supervised learning, spectral clustering, combining clustering algorithms Solutions manual, powerpoint slides, and additional resources are available to faculty using the text for their course. Register at www.textbooks.elsevier.com and search on "Theodoridis" to access resources for instructor 1. Introduction -- 2. Classifiers based on Bayes Decision -- 3. Linear Classifiers -- 4. Nonlinear Classifiers -- 5. Feature Selection -- 6. Feature Generation I: Data Transformation and Dimensionality Reduction -- 7. Feature Generation II -- 8. Template Matching -- 9. Context Depedant Clarification -- 10. System Evaultion -- 11. Clustering: Basic Concepts -- 12. Clustering Algorithms: Algorithms L Sequential -- 13. Clustering Algorithms II: Hierarchical -- 14. Clustering Algorithms III: Based on Function Optimization -- 15. Clustering Algorithms IV: Clustering -- 16. Cluster Validity Includes bibliographical references and index Classifiers based on Bayes Decision Theory -- Linear classifiers -- Nonlinear classifiers -- Feature selection -- Feature generation I : data transformation and dimensionality reduction -- Feature generation II -- Template matching -- Context-dependent classification -- Supervised learning : the epilogue -- Clustering algorithms I : sequential algorithms -- Clustering algorithms II : hierarchial algorithms -- Clustering algorithms III : schemes based on function optimization -- Clustering algorithms IV -- Cluster validity |
Beschreibung: | 1 Online-Ressource (XVII, 961 S.) graph. Darst. |
DOI: | 10.1016/B978-1-59749-272-0.X0001-2 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV039827135 | ||
003 | DE-604 | ||
005 | 20220704 | ||
007 | cr|uuu---uuuuu | ||
008 | 120124s2009 sz |||| o||u| ||||||eng d | ||
024 | 7 | |a 10.1016/B978-1-59749-272-0.X0001-2 |2 doi | |
024 | 7 | |a 10.1016/B978-1-59749-272-0.X0001-2 |2 doi | |
035 | |a (ZDB-4-EBA)ocn610009838 | ||
035 | |a (OCoLC)775112429 | ||
035 | |a (DE-599)BVBBV039827135 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
044 | |a sz |c XA-CH | ||
049 | |a DE-1046 |a DE-573 |a DE-91 |a DE-188 | ||
084 | |a ZN 6050 |0 (DE-625)157498: |2 rvk | ||
084 | |a ST 330 |0 (DE-625)143663: |2 rvk | ||
084 | |a DAT 770f |2 stub | ||
100 | 1 | |a Theodoridis, Sergios |d 1951- |e Verfasser |0 (DE-588)12164135X |4 aut | |
245 | 1 | 0 | |a Pattern recognition |b Previous ed.: San Diego, CA : Academic Press, c2006 |c Sergios Theodoridis, Konstantinos Koutroumbas |
250 | |a 4. ed. | ||
264 | 1 | |a Amsterdam [u.a.] |b Academic Press |c 2009 | |
300 | |a 1 Online-Ressource (XVII, 961 S.) |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a This book considers classical and current theory and practice, of supervised, unsupervised and semi-supervised pattern recognition, to build a complete background for professionals and students of engineering. The authors, leading experts in the field of pattern recognition, have provided an up-to-date, self-contained volume encapsulating this wide spectrum of information. The very latest methods are incorporated in this edition: semi-supervised learning, combining clustering algorithms, and relevance feedback. Thoroughly developed to include many more worked examples to give greater understanding of the various methods and techniques Many more diagrams included--now in two color--to provide greater insight through visual presentation Matlab code of the most common methods are given at the end of each chapter An accompanying book with Matlab code of the most common methods and algorithms in the book, together with a descriptive summary and solved examples, and including real-life data sets in imaging and audio recognition. The companion book is available separately or at a special packaged price (Book ISBN: 9780123744869. Package ISBN: 9780123744913) Latest hot topics included to further the reference value of the text including non-linear dimensionality reduction techniques, relevance feedback, semi-supervised learning, spectral clustering, combining clustering algorithms Solutions manual, powerpoint slides, and additional resources are available to faculty using the text for their course. Register at www.textbooks.elsevier.com and search on "Theodoridis" to access resources for instructor | ||
500 | |a 1. Introduction -- 2. Classifiers based on Bayes Decision -- 3. Linear Classifiers -- 4. Nonlinear Classifiers -- 5. Feature Selection -- 6. Feature Generation I: Data Transformation and Dimensionality Reduction -- 7. Feature Generation II -- 8. Template Matching -- 9. Context Depedant Clarification -- 10. System Evaultion -- 11. Clustering: Basic Concepts -- 12. Clustering Algorithms: Algorithms L Sequential -- 13. Clustering Algorithms II: Hierarchical -- 14. Clustering Algorithms III: Based on Function Optimization -- 15. Clustering Algorithms IV: Clustering -- 16. Cluster Validity | ||
500 | |a Includes bibliographical references and index | ||
500 | |a Classifiers based on Bayes Decision Theory -- Linear classifiers -- Nonlinear classifiers -- Feature selection -- Feature generation I : data transformation and dimensionality reduction -- Feature generation II -- Template matching -- Context-dependent classification -- Supervised learning : the epilogue -- Clustering algorithms I : sequential algorithms -- Clustering algorithms II : hierarchial algorithms -- Clustering algorithms III : schemes based on function optimization -- Clustering algorithms IV -- Cluster validity | ||
650 | 7 | |a Patroonherkenning |2 gtt | |
650 | 4 | |a Pattern recognition systems | |
650 | 4 | |a Reconnaissance des formes (Informatique) | |
650 | 4 | |a Patroonherkenning / gtt | |
650 | 0 | 7 | |a MATLAB |0 (DE-588)4329066-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mustererkennung |0 (DE-588)4040936-3 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Mustererkennung |0 (DE-588)4040936-3 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Mustererkennung |0 (DE-588)4040936-3 |D s |
689 | 1 | 1 | |a MATLAB |0 (DE-588)4329066-8 |D s |
689 | 1 | |5 DE-604 | |
700 | 1 | |a Koutroumbas, Konstantinos |d 1967- |e Verfasser |0 (DE-588)136997937 |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-1-59749-272-0 |w (DE-604)BV035114669 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 1-59749-272-8 |
856 | 4 | 0 | |u https://doi.org/10.1016/B978-1-59749-272-0.X0001-2 |x Verlag |3 Volltext |
912 | |a ZDB-33-ESD |a ZDB-33-RER |a ebook |a ZDB-4-EBA |a ZDB-33-EBS |a ZDB-33-RER | ||
940 | 1 | |q TUM_PDA_ELSEVIER_erworben | |
940 | 1 | |q FLA_PDA_ESD | |
999 | |a oai:aleph.bib-bvb.de:BVB01-024687139 | ||
966 | e | |u http://www.sciencedirect.com/science/book/9781597492720 |l FAW01 |p ZDB-33-ESD |q FAW_PDA_ESD_Kauf |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1016/B978-1-59749-272-0.X0001-2 |l FHI01 |p ZDB-33-RER |x Verlag |3 Volltext | |
966 | e | |u http://www.sciencedirect.com/science/book/9781597492720 |l FUBA1 |p ZDB-33-ESD |q ZDB-33-ESD 2012 |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804148764108128256 |
---|---|
any_adam_object | |
author | Theodoridis, Sergios 1951- Koutroumbas, Konstantinos 1967- |
author_GND | (DE-588)12164135X (DE-588)136997937 |
author_facet | Theodoridis, Sergios 1951- Koutroumbas, Konstantinos 1967- |
author_role | aut aut |
author_sort | Theodoridis, Sergios 1951- |
author_variant | s t st k k kk |
building | Verbundindex |
bvnumber | BV039827135 |
classification_rvk | ZN 6050 ST 330 |
classification_tum | DAT 770f |
collection | ZDB-33-ESD ZDB-33-RER ebook ZDB-4-EBA ZDB-33-EBS |
ctrlnum | (ZDB-4-EBA)ocn610009838 (OCoLC)775112429 (DE-599)BVBBV039827135 |
discipline | Informatik Elektrotechnik / Elektronik / Nachrichtentechnik |
doi_str_mv | 10.1016/B978-1-59749-272-0.X0001-2 |
edition | 4. ed. |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05335nmm a2200637zc 4500</leader><controlfield tag="001">BV039827135</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20220704 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">120124s2009 sz |||| o||u| ||||||eng d</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/B978-1-59749-272-0.X0001-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/B978-1-59749-272-0.X0001-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-4-EBA)ocn610009838</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)775112429</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV039827135</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">sz</subfield><subfield code="c">XA-CH</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-573</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZN 6050</subfield><subfield code="0">(DE-625)157498:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 330</subfield><subfield code="0">(DE-625)143663:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">DAT 770f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Theodoridis, Sergios</subfield><subfield code="d">1951-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)12164135X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Pattern recognition</subfield><subfield code="b">Previous ed.: San Diego, CA : Academic Press, c2006</subfield><subfield code="c">Sergios Theodoridis, Konstantinos Koutroumbas</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">4. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Amsterdam [u.a.]</subfield><subfield code="b">Academic Press</subfield><subfield code="c">2009</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XVII, 961 S.)</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This book considers classical and current theory and practice, of supervised, unsupervised and semi-supervised pattern recognition, to build a complete background for professionals and students of engineering. The authors, leading experts in the field of pattern recognition, have provided an up-to-date, self-contained volume encapsulating this wide spectrum of information. The very latest methods are incorporated in this edition: semi-supervised learning, combining clustering algorithms, and relevance feedback. Thoroughly developed to include many more worked examples to give greater understanding of the various methods and techniques Many more diagrams included--now in two color--to provide greater insight through visual presentation Matlab code of the most common methods are given at the end of each chapter An accompanying book with Matlab code of the most common methods and algorithms in the book, together with a descriptive summary and solved examples, and including real-life data sets in imaging and audio recognition. The companion book is available separately or at a special packaged price (Book ISBN: 9780123744869. Package ISBN: 9780123744913) Latest hot topics included to further the reference value of the text including non-linear dimensionality reduction techniques, relevance feedback, semi-supervised learning, spectral clustering, combining clustering algorithms Solutions manual, powerpoint slides, and additional resources are available to faculty using the text for their course. Register at www.textbooks.elsevier.com and search on "Theodoridis" to access resources for instructor</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">1. Introduction -- 2. Classifiers based on Bayes Decision -- 3. Linear Classifiers -- 4. Nonlinear Classifiers -- 5. Feature Selection -- 6. Feature Generation I: Data Transformation and Dimensionality Reduction -- 7. Feature Generation II -- 8. Template Matching -- 9. Context Depedant Clarification -- 10. System Evaultion -- 11. Clustering: Basic Concepts -- 12. Clustering Algorithms: Algorithms L Sequential -- 13. Clustering Algorithms II: Hierarchical -- 14. Clustering Algorithms III: Based on Function Optimization -- 15. Clustering Algorithms IV: Clustering -- 16. Cluster Validity</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Classifiers based on Bayes Decision Theory -- Linear classifiers -- Nonlinear classifiers -- Feature selection -- Feature generation I : data transformation and dimensionality reduction -- Feature generation II -- Template matching -- Context-dependent classification -- Supervised learning : the epilogue -- Clustering algorithms I : sequential algorithms -- Clustering algorithms II : hierarchial algorithms -- Clustering algorithms III : schemes based on function optimization -- Clustering algorithms IV -- Cluster validity</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Patroonherkenning</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pattern recognition systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Reconnaissance des formes (Informatique)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Patroonherkenning / gtt</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">MATLAB</subfield><subfield code="0">(DE-588)4329066-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mustererkennung</subfield><subfield code="0">(DE-588)4040936-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Mustererkennung</subfield><subfield code="0">(DE-588)4040936-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Mustererkennung</subfield><subfield code="0">(DE-588)4040936-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">MATLAB</subfield><subfield code="0">(DE-588)4329066-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Koutroumbas, Konstantinos</subfield><subfield code="d">1967-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)136997937</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-1-59749-272-0</subfield><subfield code="w">(DE-604)BV035114669</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">1-59749-272-8</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/B978-1-59749-272-0.X0001-2</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-33-ESD</subfield><subfield code="a">ZDB-33-RER</subfield><subfield code="a">ebook</subfield><subfield code="a">ZDB-4-EBA</subfield><subfield code="a">ZDB-33-EBS</subfield><subfield code="a">ZDB-33-RER</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">TUM_PDA_ELSEVIER_erworben</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FLA_PDA_ESD</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-024687139</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://www.sciencedirect.com/science/book/9781597492720</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-33-ESD</subfield><subfield code="q">FAW_PDA_ESD_Kauf</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1016/B978-1-59749-272-0.X0001-2</subfield><subfield code="l">FHI01</subfield><subfield code="p">ZDB-33-RER</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://www.sciencedirect.com/science/book/9781597492720</subfield><subfield code="l">FUBA1</subfield><subfield code="p">ZDB-33-ESD</subfield><subfield code="q">ZDB-33-ESD 2012</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV039827135 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T00:12:19Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-024687139 |
oclc_num | 610009838 775112429 |
open_access_boolean | |
owner | DE-1046 DE-573 DE-91 DE-BY-TUM DE-188 |
owner_facet | DE-1046 DE-573 DE-91 DE-BY-TUM DE-188 |
physical | 1 Online-Ressource (XVII, 961 S.) graph. Darst. |
psigel | ZDB-33-ESD ZDB-33-RER ebook ZDB-4-EBA ZDB-33-EBS TUM_PDA_ELSEVIER_erworben FLA_PDA_ESD ZDB-33-ESD FAW_PDA_ESD_Kauf ZDB-33-ESD ZDB-33-ESD 2012 |
publishDate | 2009 |
publishDateSearch | 2009 |
publishDateSort | 2009 |
publisher | Academic Press |
record_format | marc |
spelling | Theodoridis, Sergios 1951- Verfasser (DE-588)12164135X aut Pattern recognition Previous ed.: San Diego, CA : Academic Press, c2006 Sergios Theodoridis, Konstantinos Koutroumbas 4. ed. Amsterdam [u.a.] Academic Press 2009 1 Online-Ressource (XVII, 961 S.) graph. Darst. txt rdacontent c rdamedia cr rdacarrier This book considers classical and current theory and practice, of supervised, unsupervised and semi-supervised pattern recognition, to build a complete background for professionals and students of engineering. The authors, leading experts in the field of pattern recognition, have provided an up-to-date, self-contained volume encapsulating this wide spectrum of information. The very latest methods are incorporated in this edition: semi-supervised learning, combining clustering algorithms, and relevance feedback. Thoroughly developed to include many more worked examples to give greater understanding of the various methods and techniques Many more diagrams included--now in two color--to provide greater insight through visual presentation Matlab code of the most common methods are given at the end of each chapter An accompanying book with Matlab code of the most common methods and algorithms in the book, together with a descriptive summary and solved examples, and including real-life data sets in imaging and audio recognition. The companion book is available separately or at a special packaged price (Book ISBN: 9780123744869. Package ISBN: 9780123744913) Latest hot topics included to further the reference value of the text including non-linear dimensionality reduction techniques, relevance feedback, semi-supervised learning, spectral clustering, combining clustering algorithms Solutions manual, powerpoint slides, and additional resources are available to faculty using the text for their course. Register at www.textbooks.elsevier.com and search on "Theodoridis" to access resources for instructor 1. Introduction -- 2. Classifiers based on Bayes Decision -- 3. Linear Classifiers -- 4. Nonlinear Classifiers -- 5. Feature Selection -- 6. Feature Generation I: Data Transformation and Dimensionality Reduction -- 7. Feature Generation II -- 8. Template Matching -- 9. Context Depedant Clarification -- 10. System Evaultion -- 11. Clustering: Basic Concepts -- 12. Clustering Algorithms: Algorithms L Sequential -- 13. Clustering Algorithms II: Hierarchical -- 14. Clustering Algorithms III: Based on Function Optimization -- 15. Clustering Algorithms IV: Clustering -- 16. Cluster Validity Includes bibliographical references and index Classifiers based on Bayes Decision Theory -- Linear classifiers -- Nonlinear classifiers -- Feature selection -- Feature generation I : data transformation and dimensionality reduction -- Feature generation II -- Template matching -- Context-dependent classification -- Supervised learning : the epilogue -- Clustering algorithms I : sequential algorithms -- Clustering algorithms II : hierarchial algorithms -- Clustering algorithms III : schemes based on function optimization -- Clustering algorithms IV -- Cluster validity Patroonherkenning gtt Pattern recognition systems Reconnaissance des formes (Informatique) Patroonherkenning / gtt MATLAB (DE-588)4329066-8 gnd rswk-swf Mustererkennung (DE-588)4040936-3 gnd rswk-swf Mustererkennung (DE-588)4040936-3 s DE-604 MATLAB (DE-588)4329066-8 s Koutroumbas, Konstantinos 1967- Verfasser (DE-588)136997937 aut Erscheint auch als Druck-Ausgabe 978-1-59749-272-0 (DE-604)BV035114669 Erscheint auch als Druck-Ausgabe 1-59749-272-8 https://doi.org/10.1016/B978-1-59749-272-0.X0001-2 Verlag Volltext |
spellingShingle | Theodoridis, Sergios 1951- Koutroumbas, Konstantinos 1967- Pattern recognition Previous ed.: San Diego, CA : Academic Press, c2006 Patroonherkenning gtt Pattern recognition systems Reconnaissance des formes (Informatique) Patroonherkenning / gtt MATLAB (DE-588)4329066-8 gnd Mustererkennung (DE-588)4040936-3 gnd |
subject_GND | (DE-588)4329066-8 (DE-588)4040936-3 |
title | Pattern recognition Previous ed.: San Diego, CA : Academic Press, c2006 |
title_auth | Pattern recognition Previous ed.: San Diego, CA : Academic Press, c2006 |
title_exact_search | Pattern recognition Previous ed.: San Diego, CA : Academic Press, c2006 |
title_full | Pattern recognition Previous ed.: San Diego, CA : Academic Press, c2006 Sergios Theodoridis, Konstantinos Koutroumbas |
title_fullStr | Pattern recognition Previous ed.: San Diego, CA : Academic Press, c2006 Sergios Theodoridis, Konstantinos Koutroumbas |
title_full_unstemmed | Pattern recognition Previous ed.: San Diego, CA : Academic Press, c2006 Sergios Theodoridis, Konstantinos Koutroumbas |
title_short | Pattern recognition |
title_sort | pattern recognition previous ed san diego ca academic press c2006 |
title_sub | Previous ed.: San Diego, CA : Academic Press, c2006 |
topic | Patroonherkenning gtt Pattern recognition systems Reconnaissance des formes (Informatique) Patroonherkenning / gtt MATLAB (DE-588)4329066-8 gnd Mustererkennung (DE-588)4040936-3 gnd |
topic_facet | Patroonherkenning Pattern recognition systems Reconnaissance des formes (Informatique) Patroonherkenning / gtt MATLAB Mustererkennung |
url | https://doi.org/10.1016/B978-1-59749-272-0.X0001-2 |
work_keys_str_mv | AT theodoridissergios patternrecognitionpreviousedsandiegocaacademicpressc2006 AT koutroumbaskonstantinos patternrecognitionpreviousedsandiegocaacademicpressc2006 |