Iterative methods for linear and nonlinear equations:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Philadelphia, Pa.
Society for Industrial and Applied Mathematics (SIAM, 3600 Market Street, Floor 6, Philadelphia, PA 19104)
1995
|
Schriftenreihe: | Frontiers in applied mathematics
16 |
Schlagworte: | |
Online-Zugang: | TUM01 UBW01 UBY01 UER01 Volltext |
Beschreibung: | Mode of access: World Wide Web. - System requirements: Adobe Acrobat Reader Includes bibliographical references (s. 153-162) and index Preface -- How to get the software -- Part I. Linear equations. Chapter 1. Basic concepts and stationary iterative methods; Chapter 2. Conjugate gradient iteration; Chapter 3. GMRES iteration -- Part II. Nonlinear equations. Chapter 4. Basic concepts and fixed point iteration; Chapter 5. Newton's method; Chapter 6. Inexact Newton methods; Chapter 7. Broyden's method; Chapter 8. Global convergence -- Bibliography -- Index Linear and nonlinear systems of equations are the basis for many, if not most, of the models of phenomena in science and engineering, and their efficient numerical solution is critical to progress in these areas. This is the first book to be published on nonlinear equations since the mid-1980s. Although it stresses recent developments in this area, such as Newton-Krylov methods, considerable material on linear equations has been incorporated. This book focuses on a small number of methods and treats them in depth. The author provides a complete analysis of the conjugate gradient and generalized minimum residual iterations as well as recent advances including Newton-Krylov methods, incorporation of inexactness and noise into the analysis, new proofs and implementations of Broyden's method, and globalization of inexact Newton methods. Examples, methods, and algorithmic choices are based on applications to infinite dimensional problems such as partial differential equations and integral equations. The analysis and proof techniques are constructed with the infinite dimensional setting in mind and the computational examples and exercises are based on the MATLAB environment |
Beschreibung: | 1 Online-Ressource (xiii, 165 Seiten) |
ISBN: | 0898713528 9780898713527 |
DOI: | 10.1137/1.9781611970944 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV039747373 | ||
003 | DE-604 | ||
005 | 20210408 | ||
007 | cr|uuu---uuuuu | ||
008 | 111207s1995 sz |||| o||u| ||||||eng d | ||
010 | |a 95032249 | ||
020 | |a 0898713528 |c pbk. |9 0898713528 | ||
020 | |a 9780898713527 |c pbk. |9 9780898713527 | ||
024 | 7 | |a 10.1137/1.9781611970944 |2 doi | |
035 | |a (OCoLC)775728984 | ||
035 | |a (DE-599)BVBBV039747373 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a sz |c XA-CH | ||
049 | |a DE-91 |a DE-29 |a DE-706 |a DE-83 |a DE-20 | ||
084 | |a QH 160 |0 (DE-625)141535: |2 rvk | ||
084 | |a SK 910 |0 (DE-625)143270: |2 rvk | ||
084 | |a SK 920 |0 (DE-625)143272: |2 rvk | ||
084 | |a SK 980 |0 (DE-625)143277: |2 rvk | ||
100 | 1 | |a Kelley, C. T. |e Verfasser |0 (DE-588)114209642 |4 aut | |
245 | 1 | 0 | |a Iterative methods for linear and nonlinear equations |c C.T. Kelley |
264 | 1 | |a Philadelphia, Pa. |b Society for Industrial and Applied Mathematics (SIAM, 3600 Market Street, Floor 6, Philadelphia, PA 19104) |c 1995 | |
300 | |a 1 Online-Ressource (xiii, 165 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Frontiers in applied mathematics |v 16 | |
500 | |a Mode of access: World Wide Web. - System requirements: Adobe Acrobat Reader | ||
500 | |a Includes bibliographical references (s. 153-162) and index | ||
500 | |a Preface -- How to get the software -- Part I. Linear equations. Chapter 1. Basic concepts and stationary iterative methods; Chapter 2. Conjugate gradient iteration; Chapter 3. GMRES iteration -- Part II. Nonlinear equations. Chapter 4. Basic concepts and fixed point iteration; Chapter 5. Newton's method; Chapter 6. Inexact Newton methods; Chapter 7. Broyden's method; Chapter 8. Global convergence -- Bibliography -- Index | ||
500 | |a Linear and nonlinear systems of equations are the basis for many, if not most, of the models of phenomena in science and engineering, and their efficient numerical solution is critical to progress in these areas. This is the first book to be published on nonlinear equations since the mid-1980s. Although it stresses recent developments in this area, such as Newton-Krylov methods, considerable material on linear equations has been incorporated. This book focuses on a small number of methods and treats them in depth. The author provides a complete analysis of the conjugate gradient and generalized minimum residual iterations as well as recent advances including Newton-Krylov methods, incorporation of inexactness and noise into the analysis, new proofs and implementations of Broyden's method, and globalization of inexact Newton methods. Examples, methods, and algorithmic choices are based on applications to infinite dimensional problems such as partial differential equations and integral equations. The analysis and proof techniques are constructed with the infinite dimensional setting in mind and the computational examples and exercises are based on the MATLAB environment | ||
650 | 4 | |a Iterative methods (Mathematics) | |
650 | 0 | 7 | |a Gleichungssystem |0 (DE-588)4128766-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Nichtlineares Gleichungssystem |0 (DE-588)4202607-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Iteration |0 (DE-588)4123457-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Lineares Gleichungssystem |0 (DE-588)4035826-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Gleichungssystem |0 (DE-588)4128766-6 |D s |
689 | 0 | 1 | |a Iteration |0 (DE-588)4123457-1 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Lineares Gleichungssystem |0 (DE-588)4035826-4 |D s |
689 | 1 | 1 | |a Iteration |0 (DE-588)4123457-1 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Nichtlineares Gleichungssystem |0 (DE-588)4202607-6 |D s |
689 | 2 | 1 | |a Iteration |0 (DE-588)4123457-1 |D s |
689 | 2 | |8 3\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe, Paperback |z 0898713528 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe, Paperback |z 9780898713527 |
830 | 0 | |a Frontiers in applied mathematics |v 16 |w (DE-604)BV047220606 |9 16 | |
856 | 4 | 0 | |u https://doi.org/10.1137/1.9781611970944 |x Verlag |3 Volltext |
912 | |a ZDB-72-SIA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-024594904 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1137/1.9781611970944 |l TUM01 |p ZDB-72-SIA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1137/1.9781611970944 |l UBW01 |p ZDB-72-SIA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1137/1.9781611970944 |l UBY01 |p ZDB-72-SIA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1137/1.9781611970944 |l UER01 |p ZDB-72-SIA |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804148637714874368 |
---|---|
any_adam_object | |
author | Kelley, C. T. |
author_GND | (DE-588)114209642 |
author_facet | Kelley, C. T. |
author_role | aut |
author_sort | Kelley, C. T. |
author_variant | c t k ct ctk |
building | Verbundindex |
bvnumber | BV039747373 |
classification_rvk | QH 160 SK 910 SK 920 SK 980 |
collection | ZDB-72-SIA |
ctrlnum | (OCoLC)775728984 (DE-599)BVBBV039747373 |
discipline | Mathematik Wirtschaftswissenschaften |
doi_str_mv | 10.1137/1.9781611970944 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04789nmm a2200721zcb4500</leader><controlfield tag="001">BV039747373</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20210408 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">111207s1995 sz |||| o||u| ||||||eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">95032249</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0898713528</subfield><subfield code="c">pbk.</subfield><subfield code="9">0898713528</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780898713527</subfield><subfield code="c">pbk.</subfield><subfield code="9">9780898713527</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1137/1.9781611970944</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)775728984</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV039747373</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">sz</subfield><subfield code="c">XA-CH</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-29</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-20</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QH 160</subfield><subfield code="0">(DE-625)141535:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 910</subfield><subfield code="0">(DE-625)143270:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 920</subfield><subfield code="0">(DE-625)143272:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 980</subfield><subfield code="0">(DE-625)143277:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kelley, C. T.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)114209642</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Iterative methods for linear and nonlinear equations</subfield><subfield code="c">C.T. Kelley</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Philadelphia, Pa.</subfield><subfield code="b">Society for Industrial and Applied Mathematics (SIAM, 3600 Market Street, Floor 6, Philadelphia, PA 19104)</subfield><subfield code="c">1995</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xiii, 165 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Frontiers in applied mathematics</subfield><subfield code="v">16</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Mode of access: World Wide Web. - System requirements: Adobe Acrobat Reader</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (s. 153-162) and index</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Preface -- How to get the software -- Part I. Linear equations. Chapter 1. Basic concepts and stationary iterative methods; Chapter 2. Conjugate gradient iteration; Chapter 3. GMRES iteration -- Part II. Nonlinear equations. Chapter 4. Basic concepts and fixed point iteration; Chapter 5. Newton's method; Chapter 6. Inexact Newton methods; Chapter 7. Broyden's method; Chapter 8. Global convergence -- Bibliography -- Index</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Linear and nonlinear systems of equations are the basis for many, if not most, of the models of phenomena in science and engineering, and their efficient numerical solution is critical to progress in these areas. This is the first book to be published on nonlinear equations since the mid-1980s. Although it stresses recent developments in this area, such as Newton-Krylov methods, considerable material on linear equations has been incorporated. This book focuses on a small number of methods and treats them in depth. The author provides a complete analysis of the conjugate gradient and generalized minimum residual iterations as well as recent advances including Newton-Krylov methods, incorporation of inexactness and noise into the analysis, new proofs and implementations of Broyden's method, and globalization of inexact Newton methods. Examples, methods, and algorithmic choices are based on applications to infinite dimensional problems such as partial differential equations and integral equations. The analysis and proof techniques are constructed with the infinite dimensional setting in mind and the computational examples and exercises are based on the MATLAB environment</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Iterative methods (Mathematics)</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Gleichungssystem</subfield><subfield code="0">(DE-588)4128766-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nichtlineares Gleichungssystem</subfield><subfield code="0">(DE-588)4202607-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Iteration</subfield><subfield code="0">(DE-588)4123457-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lineares Gleichungssystem</subfield><subfield code="0">(DE-588)4035826-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Gleichungssystem</subfield><subfield code="0">(DE-588)4128766-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Iteration</subfield><subfield code="0">(DE-588)4123457-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Lineares Gleichungssystem</subfield><subfield code="0">(DE-588)4035826-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Iteration</subfield><subfield code="0">(DE-588)4123457-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Nichtlineares Gleichungssystem</subfield><subfield code="0">(DE-588)4202607-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Iteration</subfield><subfield code="0">(DE-588)4123457-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe, Paperback</subfield><subfield code="z">0898713528</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe, Paperback</subfield><subfield code="z">9780898713527</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Frontiers in applied mathematics</subfield><subfield code="v">16</subfield><subfield code="w">(DE-604)BV047220606</subfield><subfield code="9">16</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1137/1.9781611970944</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-72-SIA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-024594904</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1137/1.9781611970944</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-72-SIA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1137/1.9781611970944</subfield><subfield code="l">UBW01</subfield><subfield code="p">ZDB-72-SIA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1137/1.9781611970944</subfield><subfield code="l">UBY01</subfield><subfield code="p">ZDB-72-SIA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1137/1.9781611970944</subfield><subfield code="l">UER01</subfield><subfield code="p">ZDB-72-SIA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV039747373 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T00:10:18Z |
institution | BVB |
isbn | 0898713528 9780898713527 |
language | English |
lccn | 95032249 |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-024594904 |
oclc_num | 775728984 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-29 DE-706 DE-83 DE-20 |
owner_facet | DE-91 DE-BY-TUM DE-29 DE-706 DE-83 DE-20 |
physical | 1 Online-Ressource (xiii, 165 Seiten) |
psigel | ZDB-72-SIA |
publishDate | 1995 |
publishDateSearch | 1995 |
publishDateSort | 1995 |
publisher | Society for Industrial and Applied Mathematics (SIAM, 3600 Market Street, Floor 6, Philadelphia, PA 19104) |
record_format | marc |
series | Frontiers in applied mathematics |
series2 | Frontiers in applied mathematics |
spelling | Kelley, C. T. Verfasser (DE-588)114209642 aut Iterative methods for linear and nonlinear equations C.T. Kelley Philadelphia, Pa. Society for Industrial and Applied Mathematics (SIAM, 3600 Market Street, Floor 6, Philadelphia, PA 19104) 1995 1 Online-Ressource (xiii, 165 Seiten) txt rdacontent c rdamedia cr rdacarrier Frontiers in applied mathematics 16 Mode of access: World Wide Web. - System requirements: Adobe Acrobat Reader Includes bibliographical references (s. 153-162) and index Preface -- How to get the software -- Part I. Linear equations. Chapter 1. Basic concepts and stationary iterative methods; Chapter 2. Conjugate gradient iteration; Chapter 3. GMRES iteration -- Part II. Nonlinear equations. Chapter 4. Basic concepts and fixed point iteration; Chapter 5. Newton's method; Chapter 6. Inexact Newton methods; Chapter 7. Broyden's method; Chapter 8. Global convergence -- Bibliography -- Index Linear and nonlinear systems of equations are the basis for many, if not most, of the models of phenomena in science and engineering, and their efficient numerical solution is critical to progress in these areas. This is the first book to be published on nonlinear equations since the mid-1980s. Although it stresses recent developments in this area, such as Newton-Krylov methods, considerable material on linear equations has been incorporated. This book focuses on a small number of methods and treats them in depth. The author provides a complete analysis of the conjugate gradient and generalized minimum residual iterations as well as recent advances including Newton-Krylov methods, incorporation of inexactness and noise into the analysis, new proofs and implementations of Broyden's method, and globalization of inexact Newton methods. Examples, methods, and algorithmic choices are based on applications to infinite dimensional problems such as partial differential equations and integral equations. The analysis and proof techniques are constructed with the infinite dimensional setting in mind and the computational examples and exercises are based on the MATLAB environment Iterative methods (Mathematics) Gleichungssystem (DE-588)4128766-6 gnd rswk-swf Nichtlineares Gleichungssystem (DE-588)4202607-6 gnd rswk-swf Iteration (DE-588)4123457-1 gnd rswk-swf Lineares Gleichungssystem (DE-588)4035826-4 gnd rswk-swf Gleichungssystem (DE-588)4128766-6 s Iteration (DE-588)4123457-1 s 1\p DE-604 Lineares Gleichungssystem (DE-588)4035826-4 s 2\p DE-604 Nichtlineares Gleichungssystem (DE-588)4202607-6 s 3\p DE-604 Erscheint auch als Druck-Ausgabe, Paperback 0898713528 Erscheint auch als Druck-Ausgabe, Paperback 9780898713527 Frontiers in applied mathematics 16 (DE-604)BV047220606 16 https://doi.org/10.1137/1.9781611970944 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Kelley, C. T. Iterative methods for linear and nonlinear equations Frontiers in applied mathematics Iterative methods (Mathematics) Gleichungssystem (DE-588)4128766-6 gnd Nichtlineares Gleichungssystem (DE-588)4202607-6 gnd Iteration (DE-588)4123457-1 gnd Lineares Gleichungssystem (DE-588)4035826-4 gnd |
subject_GND | (DE-588)4128766-6 (DE-588)4202607-6 (DE-588)4123457-1 (DE-588)4035826-4 |
title | Iterative methods for linear and nonlinear equations |
title_auth | Iterative methods for linear and nonlinear equations |
title_exact_search | Iterative methods for linear and nonlinear equations |
title_full | Iterative methods for linear and nonlinear equations C.T. Kelley |
title_fullStr | Iterative methods for linear and nonlinear equations C.T. Kelley |
title_full_unstemmed | Iterative methods for linear and nonlinear equations C.T. Kelley |
title_short | Iterative methods for linear and nonlinear equations |
title_sort | iterative methods for linear and nonlinear equations |
topic | Iterative methods (Mathematics) Gleichungssystem (DE-588)4128766-6 gnd Nichtlineares Gleichungssystem (DE-588)4202607-6 gnd Iteration (DE-588)4123457-1 gnd Lineares Gleichungssystem (DE-588)4035826-4 gnd |
topic_facet | Iterative methods (Mathematics) Gleichungssystem Nichtlineares Gleichungssystem Iteration Lineares Gleichungssystem |
url | https://doi.org/10.1137/1.9781611970944 |
volume_link | (DE-604)BV047220606 |
work_keys_str_mv | AT kelleyct iterativemethodsforlinearandnonlinearequations |