Multilevel adaptive methods for partial differential equations:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Philadelphia, Pa.
Society for Industrial and Applied Mathematics
1989
|
Schriftenreihe: | Frontiers in applied mathematics
6 |
Schlagworte: | |
Online-Zugang: | TUM01 UBW01 UBY01 UER01 Volltext |
Beschreibung: | Mode of access: World Wide Web. - System requirements: Adobe Acrobat Reader Includes bibliographical references (s. 155-160) and index Chapter 1. Introduction -- Chapter 2. The Finite Volume Element method (FVE) -- Chapter 3. Multigrid methods (MG) -- Chapter 4. The Fast Adaptive Composite grid method (FAC) -- Chapter 5. The Asynchronous Fast Adaptive Composite grid method (AFAC) -- Appendix -- References -- Index A practical handbook for understanding and using fast adaptive composite grid (FAC) methods for discretization and solution of partial differential equations (PDEs). Contains fundamental concepts. These so-called FAC are characterized by their use of a composite grid, which is nominally the union of various uniform grids. FAC is capable of producing a composite grid with tailored resolution, and a corresponding solution with commensurate accuracy, at a cost proportional to the number of composite grid points. Moreover, special asynchronous versions of the fast adaptive composite grid methods (AFAC) studied here have seemingly optimal complexity in a parallel computing environment. Most of the methods treated in this book were discovered only within the last decade, and in many cases their development is still in its infancy. While this is not meant to be comprehensive, it does provide a theoretical and practical guide to multilevel adaptive methods and relevant discretization techniques. It also contains new material, which is included to fill in certain gaps and to expose new avenues of research. Also, because adaptive refinement seems to demand a lot of attention to philosophical issues, personal perspectives are often brought freely into the discussion |
Beschreibung: | 1 Online-Ressource (ix, 162 Seiten) |
ISBN: | 0898712475 9780898712476 |
DOI: | 10.1137/1.9781611971026 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV039747365 | ||
003 | DE-604 | ||
005 | 20210915 | ||
007 | cr|uuu---uuuuu | ||
008 | 111207s1989 sz |||| o||u| ||||||eng d | ||
010 | |a 89022034 | ||
020 | |a 0898712475 |c pbk. |9 0898712475 | ||
020 | |a 9780898712476 |c pbk. |9 9780898712476 | ||
024 | 7 | |a 10.1137/1.9781611971026 |2 doi | |
035 | |a (OCoLC)873886551 | ||
035 | |a (DE-599)BVBBV039747365 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a sz |c XA-CH | ||
049 | |a DE-91 |a DE-29 |a DE-706 |a DE-83 |a DE-20 | ||
084 | |a SK 540 |0 (DE-625)143245: |2 rvk | ||
084 | |a SK 920 |0 (DE-625)143272: |2 rvk | ||
084 | |a 65N20 |2 msc | ||
084 | |a 65N55 |2 msc | ||
100 | 1 | |a McCormick, Stephen F. |d 1944- |0 (DE-588)142774065 |4 aut | |
245 | 1 | 0 | |a Multilevel adaptive methods for partial differential equations |c Stephen F. McCormick |
264 | 1 | |a Philadelphia, Pa. |b Society for Industrial and Applied Mathematics |c 1989 | |
300 | |a 1 Online-Ressource (ix, 162 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Frontiers in applied mathematics |v 6 | |
500 | |a Mode of access: World Wide Web. - System requirements: Adobe Acrobat Reader | ||
500 | |a Includes bibliographical references (s. 155-160) and index | ||
500 | |a Chapter 1. Introduction -- Chapter 2. The Finite Volume Element method (FVE) -- Chapter 3. Multigrid methods (MG) -- Chapter 4. The Fast Adaptive Composite grid method (FAC) -- Chapter 5. The Asynchronous Fast Adaptive Composite grid method (AFAC) -- Appendix -- References -- Index | ||
500 | |a A practical handbook for understanding and using fast adaptive composite grid (FAC) methods for discretization and solution of partial differential equations (PDEs). Contains fundamental concepts. These so-called FAC are characterized by their use of a composite grid, which is nominally the union of various uniform grids. FAC is capable of producing a composite grid with tailored resolution, and a corresponding solution with commensurate accuracy, at a cost proportional to the number of composite grid points. Moreover, special asynchronous versions of the fast adaptive composite grid methods (AFAC) studied here have seemingly optimal complexity in a parallel computing environment. Most of the methods treated in this book were discovered only within the last decade, and in many cases their development is still in its infancy. While this is not meant to be comprehensive, it does provide a theoretical and practical guide to multilevel adaptive methods and relevant discretization techniques. It also contains new material, which is included to fill in certain gaps and to expose new avenues of research. Also, because adaptive refinement seems to demand a lot of attention to philosophical issues, personal perspectives are often brought freely into the discussion | ||
650 | 4 | |a Differential equations, Partial / Numerical solutions | |
650 | 4 | |a Multigrid methods (Numerical analysis) | |
650 | 0 | 7 | |a Mehrgitterverfahren |0 (DE-588)4038376-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Partielle Differentialgleichung |0 (DE-588)4044779-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Finite-Elemente-Methode |0 (DE-588)4017233-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Partielle Differentialgleichung |0 (DE-588)4044779-0 |D s |
689 | 0 | 1 | |a Mehrgitterverfahren |0 (DE-588)4038376-3 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Partielle Differentialgleichung |0 (DE-588)4044779-0 |D s |
689 | 1 | 1 | |a Finite-Elemente-Methode |0 (DE-588)4017233-8 |D s |
689 | 1 | |5 DE-604 | |
710 | 2 | |a Society for Industrial and Applied Mathematics |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 0898712475 |
830 | 0 | |a Frontiers in applied mathematics |v 6 |w (DE-604)BV047220606 |9 6 | |
856 | 4 | 0 | |u https://doi.org/10.1137/1.9781611971026 |x Verlag |3 Volltext |
912 | |a ZDB-72-SIA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-024594896 | ||
966 | e | |u https://doi.org/10.1137/1.9781611971026 |l TUM01 |p ZDB-72-SIA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1137/1.9781611971026 |l UBW01 |p ZDB-72-SIA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1137/1.9781611971026 |l UBY01 |p ZDB-72-SIA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1137/1.9781611971026 |l UER01 |p ZDB-72-SIA |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804148637693902848 |
---|---|
any_adam_object | |
author | McCormick, Stephen F. 1944- |
author_GND | (DE-588)142774065 |
author_facet | McCormick, Stephen F. 1944- |
author_role | aut |
author_sort | McCormick, Stephen F. 1944- |
author_variant | s f m sf sfm |
building | Verbundindex |
bvnumber | BV039747365 |
classification_rvk | SK 540 SK 920 |
collection | ZDB-72-SIA |
ctrlnum | (OCoLC)873886551 (DE-599)BVBBV039747365 |
discipline | Mathematik |
doi_str_mv | 10.1137/1.9781611971026 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04300nmm a2200649zcb4500</leader><controlfield tag="001">BV039747365</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20210915 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">111207s1989 sz |||| o||u| ||||||eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">89022034</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0898712475</subfield><subfield code="c">pbk.</subfield><subfield code="9">0898712475</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780898712476</subfield><subfield code="c">pbk.</subfield><subfield code="9">9780898712476</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1137/1.9781611971026</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)873886551</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV039747365</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">sz</subfield><subfield code="c">XA-CH</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-29</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-20</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 540</subfield><subfield code="0">(DE-625)143245:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 920</subfield><subfield code="0">(DE-625)143272:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">65N20</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">65N55</subfield><subfield code="2">msc</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">McCormick, Stephen F.</subfield><subfield code="d">1944-</subfield><subfield code="0">(DE-588)142774065</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Multilevel adaptive methods for partial differential equations</subfield><subfield code="c">Stephen F. McCormick</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Philadelphia, Pa.</subfield><subfield code="b">Society for Industrial and Applied Mathematics</subfield><subfield code="c">1989</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (ix, 162 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Frontiers in applied mathematics</subfield><subfield code="v">6</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Mode of access: World Wide Web. - System requirements: Adobe Acrobat Reader</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (s. 155-160) and index</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Chapter 1. Introduction -- Chapter 2. The Finite Volume Element method (FVE) -- Chapter 3. Multigrid methods (MG) -- Chapter 4. The Fast Adaptive Composite grid method (FAC) -- Chapter 5. The Asynchronous Fast Adaptive Composite grid method (AFAC) -- Appendix -- References -- Index</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">A practical handbook for understanding and using fast adaptive composite grid (FAC) methods for discretization and solution of partial differential equations (PDEs). Contains fundamental concepts. These so-called FAC are characterized by their use of a composite grid, which is nominally the union of various uniform grids. FAC is capable of producing a composite grid with tailored resolution, and a corresponding solution with commensurate accuracy, at a cost proportional to the number of composite grid points. Moreover, special asynchronous versions of the fast adaptive composite grid methods (AFAC) studied here have seemingly optimal complexity in a parallel computing environment. Most of the methods treated in this book were discovered only within the last decade, and in many cases their development is still in its infancy. While this is not meant to be comprehensive, it does provide a theoretical and practical guide to multilevel adaptive methods and relevant discretization techniques. It also contains new material, which is included to fill in certain gaps and to expose new avenues of research. Also, because adaptive refinement seems to demand a lot of attention to philosophical issues, personal perspectives are often brought freely into the discussion</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations, Partial / Numerical solutions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multigrid methods (Numerical analysis)</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mehrgitterverfahren</subfield><subfield code="0">(DE-588)4038376-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Partielle Differentialgleichung</subfield><subfield code="0">(DE-588)4044779-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Finite-Elemente-Methode</subfield><subfield code="0">(DE-588)4017233-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Partielle Differentialgleichung</subfield><subfield code="0">(DE-588)4044779-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Mehrgitterverfahren</subfield><subfield code="0">(DE-588)4038376-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Partielle Differentialgleichung</subfield><subfield code="0">(DE-588)4044779-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Finite-Elemente-Methode</subfield><subfield code="0">(DE-588)4017233-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="710" ind1="2" ind2=" "><subfield code="a">Society for Industrial and Applied Mathematics</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">0898712475</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Frontiers in applied mathematics</subfield><subfield code="v">6</subfield><subfield code="w">(DE-604)BV047220606</subfield><subfield code="9">6</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1137/1.9781611971026</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-72-SIA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-024594896</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1137/1.9781611971026</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-72-SIA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1137/1.9781611971026</subfield><subfield code="l">UBW01</subfield><subfield code="p">ZDB-72-SIA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1137/1.9781611971026</subfield><subfield code="l">UBY01</subfield><subfield code="p">ZDB-72-SIA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1137/1.9781611971026</subfield><subfield code="l">UER01</subfield><subfield code="p">ZDB-72-SIA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV039747365 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T00:10:18Z |
institution | BVB |
isbn | 0898712475 9780898712476 |
language | English |
lccn | 89022034 |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-024594896 |
oclc_num | 873886551 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-29 DE-706 DE-83 DE-20 |
owner_facet | DE-91 DE-BY-TUM DE-29 DE-706 DE-83 DE-20 |
physical | 1 Online-Ressource (ix, 162 Seiten) |
psigel | ZDB-72-SIA |
publishDate | 1989 |
publishDateSearch | 1989 |
publishDateSort | 1989 |
publisher | Society for Industrial and Applied Mathematics |
record_format | marc |
series | Frontiers in applied mathematics |
series2 | Frontiers in applied mathematics |
spelling | McCormick, Stephen F. 1944- (DE-588)142774065 aut Multilevel adaptive methods for partial differential equations Stephen F. McCormick Philadelphia, Pa. Society for Industrial and Applied Mathematics 1989 1 Online-Ressource (ix, 162 Seiten) txt rdacontent c rdamedia cr rdacarrier Frontiers in applied mathematics 6 Mode of access: World Wide Web. - System requirements: Adobe Acrobat Reader Includes bibliographical references (s. 155-160) and index Chapter 1. Introduction -- Chapter 2. The Finite Volume Element method (FVE) -- Chapter 3. Multigrid methods (MG) -- Chapter 4. The Fast Adaptive Composite grid method (FAC) -- Chapter 5. The Asynchronous Fast Adaptive Composite grid method (AFAC) -- Appendix -- References -- Index A practical handbook for understanding and using fast adaptive composite grid (FAC) methods for discretization and solution of partial differential equations (PDEs). Contains fundamental concepts. These so-called FAC are characterized by their use of a composite grid, which is nominally the union of various uniform grids. FAC is capable of producing a composite grid with tailored resolution, and a corresponding solution with commensurate accuracy, at a cost proportional to the number of composite grid points. Moreover, special asynchronous versions of the fast adaptive composite grid methods (AFAC) studied here have seemingly optimal complexity in a parallel computing environment. Most of the methods treated in this book were discovered only within the last decade, and in many cases their development is still in its infancy. While this is not meant to be comprehensive, it does provide a theoretical and practical guide to multilevel adaptive methods and relevant discretization techniques. It also contains new material, which is included to fill in certain gaps and to expose new avenues of research. Also, because adaptive refinement seems to demand a lot of attention to philosophical issues, personal perspectives are often brought freely into the discussion Differential equations, Partial / Numerical solutions Multigrid methods (Numerical analysis) Mehrgitterverfahren (DE-588)4038376-3 gnd rswk-swf Partielle Differentialgleichung (DE-588)4044779-0 gnd rswk-swf Finite-Elemente-Methode (DE-588)4017233-8 gnd rswk-swf Partielle Differentialgleichung (DE-588)4044779-0 s Mehrgitterverfahren (DE-588)4038376-3 s DE-604 Finite-Elemente-Methode (DE-588)4017233-8 s Society for Industrial and Applied Mathematics Sonstige oth Erscheint auch als Druck-Ausgabe 0898712475 Frontiers in applied mathematics 6 (DE-604)BV047220606 6 https://doi.org/10.1137/1.9781611971026 Verlag Volltext |
spellingShingle | McCormick, Stephen F. 1944- Multilevel adaptive methods for partial differential equations Frontiers in applied mathematics Differential equations, Partial / Numerical solutions Multigrid methods (Numerical analysis) Mehrgitterverfahren (DE-588)4038376-3 gnd Partielle Differentialgleichung (DE-588)4044779-0 gnd Finite-Elemente-Methode (DE-588)4017233-8 gnd |
subject_GND | (DE-588)4038376-3 (DE-588)4044779-0 (DE-588)4017233-8 |
title | Multilevel adaptive methods for partial differential equations |
title_auth | Multilevel adaptive methods for partial differential equations |
title_exact_search | Multilevel adaptive methods for partial differential equations |
title_full | Multilevel adaptive methods for partial differential equations Stephen F. McCormick |
title_fullStr | Multilevel adaptive methods for partial differential equations Stephen F. McCormick |
title_full_unstemmed | Multilevel adaptive methods for partial differential equations Stephen F. McCormick |
title_short | Multilevel adaptive methods for partial differential equations |
title_sort | multilevel adaptive methods for partial differential equations |
topic | Differential equations, Partial / Numerical solutions Multigrid methods (Numerical analysis) Mehrgitterverfahren (DE-588)4038376-3 gnd Partielle Differentialgleichung (DE-588)4044779-0 gnd Finite-Elemente-Methode (DE-588)4017233-8 gnd |
topic_facet | Differential equations, Partial / Numerical solutions Multigrid methods (Numerical analysis) Mehrgitterverfahren Partielle Differentialgleichung Finite-Elemente-Methode |
url | https://doi.org/10.1137/1.9781611971026 |
volume_link | (DE-604)BV047220606 |
work_keys_str_mv | AT mccormickstephenf multileveladaptivemethodsforpartialdifferentialequations AT societyforindustrialandappliedmathematics multileveladaptivemethodsforpartialdifferentialequations |